Constitutive Equations for Dilute Bubble Suspensions and Rheological Behavior in Simple Shear and Uniaxial Elongational Flow Fields

  • Seo Dongjin (School of Materials Science and Engineering, Seoul National University) ;
  • Youn Jae Ryoun (School of Materials Science and Engineering, Seoul National University)
  • 발행 : 2005.06.01

초록

A theoretical model is proposed in order to investigate rheological behavior of bubble suspension with large deformation. Theoretical constitutive equations for dilute bubble suspensions are derived by applying a deformation theory of ellipsoidal droplet [1] to a phenomenological suspension theory [2]. The rate of deformation tensor within the bubble and the time evolution of interface tensor are predicted by applying the proposed constitutive equations, which have two free fitting parameters. The transient and steady rheological properties of dilute bubble suspensions are studied for several capillary numbers (Ca) under simple shear flow and uniaxial elongational flow fields. The retraction force of the bubble caused by the interfacial tension increases as bubbles undergo deformation. The transient and steady relative viscosity decreases as Ca increases. The normal stress difference (NSD) under the simple shear has the largest value when Ca is around 1 and the ratio Of the first NSD to the second NSD has the value of 3/4 for large Ca but 2 for small Ca. In the uniaxial elongational flow, the elongational viscosity is three times as large as the shear viscosity like the Newtonian fluid.

키워드

참고문헌

  1. P. L. Maffettone and M. Minale, J. Non-Newt. Fluid Mech., 78, 227.(1998) https://doi.org/10.1016/S0304-3959(98)00226-7
  2. M. Doi and T. Ohta, Int. J. Chem. Phy., 95(2), 1242 (1991) https://doi.org/10.1063/1.461156
  3. D. Klempner and K. C. Frisch, 'Handbook of Polymeric Foams and Foam Technology', Hanser Publishers, New York, 1991
  4. H. Park and J. R. Youn, Journal of Engineering for Industry, ASME Transactions, 114(3),323 (1992)
  5. W. J. Cho, H. Park, and J. R. Youn, Journal of Engineering Manufacture, 208, 121 (1994) https://doi.org/10.1243/PIME_PROC_1994_208_068_02
  6. H. Park and J. R. Youn, Polymer Engineering and Science, 35(23), 1899 (1995) https://doi.org/10.1002/pen.760352310
  7. J. R. Youn and H. Park, Polymer Engineering and Science, 39(3),457 (1999) https://doi.org/10.1002/pen.11435
  8. C. Kim and J. R. Youn, Polymer-Plastics Technology and Engineering, 39(1), 163 (2000) https://doi.org/10.1081/PPT-100100022
  9. M. S. Koo, K. Chung, and J. R. Youn, Polymer Engineering and Science, 41(7), 1177 (2001) https://doi.org/10.1002/pen.10703
  10. W. H. Lee, S. W. Lee, T. J. Kang, K. Chung, and J. R. Youn, Fibers and Polymers, 3(4), 159 (2002) https://doi.org/10.1007/BF02912661
  11. C. W. Macosko, 'Rheology: Principles, Measurements, and Applications', p.425, Wiley, New York, 1994
  12. E. W. Llewellin, H. M. Mader, and S. D. R. Wilson, Proceedings of the Royal Society of London Series A, 458, 987 (2002)
  13. A. C. Rust and M. Manga, J. Non-Newt. Fluid Mech., 104, 53 (2002) https://doi.org/10.1016/S0377-0257(02)00013-7
  14. Y. M. Lim, D. Seo, and J. R. Youn, Korea-Australia Rheology Jounal, 16(1),47 (2004)
  15. N. A. Frankel and A. Acrivos, Journal of Fluid Mechanics, 44, 65 (1970) https://doi.org/10.1017/S0022112070001696
  16. W. R. Schowalter, C. E. Chaffey, and H. Brenner, J. Colloid Interface Sci., 26, 152 (1968) https://doi.org/10.1016/0021-9797(68)90307-X
  17. N. E. Jackson and C. L. Tucker, J. Rheol., 47(3), 659 (2003) https://doi.org/10.1122/1.1562152
  18. W. Yu and M. Bousmina, J. Rheol., 47(4), 1011 (2003) https://doi.org/10.1122/1.1582853
  19. M. Manga and M. Loewenberg, Journal of Volcanology and Geothermal Research, 105, 19 (2001) https://doi.org/10.1016/S0377-0273(00)00239-0
  20. V. Cristini, R. W. Hooper, C. W. Macosko, M. Simeone, and S. Guido, Industrial & Engineering Chemistry Research, 41, 6305 (2002) https://doi.org/10.1021/ie0200961
  21. V. Cristini, S. Guido, A. Alfani, J. Blawzdziewicz, and M. Loewenberg, J. Rheol., 47, 1283 (2003) https://doi.org/10.1122/1.1603240
  22. Y. Y. Renardy, M. Renardy, and V. Cristini, European Journal of Mechanics B/Fluids, 21, 49 (2002) https://doi.org/10.1016/S0997-7546(01)01159-1
  23. A. S. Almusallam, R. G. Larson, and M. J. Solomon, J. Rheol.,44, 1055 (2000) https://doi.org/10.1122/1.1287288
  24. L. D. Landau and E. M. Lifshitz, 'Fluid Mechanics', p.76, Addison-Wesley Publishing Company, New York, 1959
  25. E. D. Wetzel and C. L. Tucker, International Journal of Multiphase Flow, 25, 35 (1999) https://doi.org/10.1016/S0301-9322(98)00013-5
  26. J. F. Palierne, Rheologica Acta, 29, 204 (1990) https://doi.org/10.1007/BF01331356
  27. G. W. M. Peters, S. Hansen, and H. E. H. Meijer, J. Rheol., 45(3),659 (2001) https://doi.org/10.1122/1.1366714
  28. D. Graebling, R. Muller, and J. F. Palierne, Macromolecules, 26, 320 (1993) https://doi.org/10.1021/ma00054a011
  29. H. M. Lee and O. O. Park, J. Rheol., 38(5),1405 (1994) https://doi.org/10.1122/1.550551
  30. J. K. Mackenzie, Proceedings of the Royal Society of London Series B, 63, 2 (1950)
  31. G. I. Taylor, Proceedings of the Royal Society of London Series A, 138, 41 (1932)
  32. H. P. Grace, Chemical Engineering Communications, 14, 225 (1982) https://doi.org/10.1080/00986448208911047
  33. D. J. Stein and F. J. Spera, Journal of Volcanology and Geothermal Research, 49, 157 (1992) https://doi.org/10.1016/0377-0273(92)90011-2
  34. E. D. Wetzel and C. L. Tucker, Journal of Fluid Meehanics, 426, 199 (2001) https://doi.org/10.1017/S0022112000002251