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Abstract

In the present paper, , we observe a relation between fuzzy norms  and induced crisp norms on a linear space. We first prove

that if ©1, ©2 are equivalent fuzzy norms on a linear space, then for every e=(0,1), the induced crisp norms P 15 and P 25
respectively are equivalent. Since the converse does not hold, we prove it under some strict conditions. And consider the
following theorem proved in [8]: Let p be a lower semicontinuous fuzzy norm on a normed linear space X , and have the
bounded support. Then p is equivalent to the fuzzy norm X p where B is the closed unit ball of X. The lower semi-continuity
of p is an essential condition which guarantees the continuity of P . where 0< &< 1. As the last result, we prove that : if o

is a fuzzy norm on a finite dimensional vector space, then p is equivalent to X p if and only if the support of o is bounded.

Key words : fuzzy normed linear space, equivalent fuzzy norm, induced crisp norm.

1. Introduction

Katsaras and Liu[3] introduced the notion of a fuzzy vector
space and fuzzy topological vector space. These ideas were
modified by Katsaras[1] and in [2] he defined a fuzzy norm
on a vector space. Krishna and Sarma [4] studied the
topological generation and normability of fuzzy topological
vector spaces by observing the equivalence of fuzzy topology
on a vector space, obtained in several different ways{4]. They
also give a sufficient condition for the fuzzy vector topology
induced by a family of fuzzy seminorms to be fuzzy normable
(ie.) to be induced by a single fuzzy norm. One interesting
observation made in [4] was that if p is a fuzzy (semi) norm
on a linear space X, then for each € with (0<e<1,
P(x) = inf{t>0 | to(x)> €} gives an ordinary (semi)norm
on X. This idea was used to obtain the equivalence of several
fuzzy topologies mentioned earlier.

In the present paper, we observe a relation between fuzzy
norms and  induced crisp norms on a linear space. We first

prove the following theorem: Let ©,, 02 be two fuzzy

: 1 2 . .
norms on a linear space and P, ¢ be induced crisp norms

respectively. If ©,,0; are equivalent, then for every

e=(0,1), the induced crisp norms PL and P% are
equivalent. Since the converse is not true, we prove the
converse under some strict conditions. And the following
theorem was proved in [8]: Let o be a lower semicontinuous
fuzzy norm on a normed linear space X and have the
bounded support : x= X | o(x) >0 is bounded. Then p is
equivalent to the fuzzy norm X p where B is the closed unit
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ball of X. The lower semicontinuity of p, in the hypothsis of
the theorem, is a very important condition which guarantees
the continuity of . where (0< &< 1. Removing the lower
simicontinuity of p, as the last result, we prove that if pis a
fuzzy norm on a finite dimensional vector space, then o is
equivalent to X p where B is the closed unit ball of X if
and only if the support of o is bounded.

2. Preliminaries

Let X be a linear space over the field K (R or C)
throughout this paper. A fuzzy set in X is an element of the
set ¥ of all functions from X into the unit interval I In
general, fuzzy subsets of X are denoted by Greek letters. X 4
denotes the characteristic function of the set A. \Vand Aare
used for the supremum and infimum of a family, respectively,
R, =10,0).

Definition 2.1[3]. If y=7* and t€ K, then

(x/ 1) if t=0)
(t)(20) =10 if  t=0 and x*#0
N exely) if t=0and x=0.

Definition 2.2[3]. ;. =7% is said to be

(a) convex if tu+ (1 —Hue<sp for each ¢t=[0,1],
(b) balanced if xS p for each te K with |¢] <1,
(c) absolutely convex if x is convex and balanced,

(d) absorbing if V 5 ofu(x) =1 for all xe X.

Definition 2.3[2]. A fuzzy seminorm p on X is a fuzzy
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subset of X which satisfies the following three conditions.
(a) p is convex,
(b) p is balanced,
(c) p is absorbing.
If, in addition, a fuzzy seminorm p satisfies the condition
d N potolx) =0 for x#+0 in X , then o is called a
fuzzy norm.

Theorem 2.4[2]. If o is a fuzzy seminorm on X, then the
family
B=B_,= {0/ (lp):1>0,0<0<1}

is a base at zero for a fuzzy linear topology 7, .

Definition 2.5.[2). A linear space equipped with a fuzzy
seminorm (resp. fuzzy norm) is called a fuzzy seminormed
(resp. fuzzy normed) linear space.

Definition 2.6[2].

vector space X, are said to be equivalent if T,,= 7T,p, .

Two fuzzy seminorms ©,,fP2 on a

Theorem 2.7[2]. The fuzzy seminorms ©,,0; on a
vector space X are equivalent iff the following condition is
satisfied : For each (<@#<1 there exists #>(0 such that

ONp () <o (x) and ON o, (fx) <p (%),

Theorem 2.8[4].
space X. For each e= (0,1), difine
P (x) =AN{01 to(x) > e},

Then P . is a seminorm on X for each e= (0, 1). Further
if and only if for each

Let o be a fuzzy seminorm on a linear

o is a fuzzy norm on X
e=(0,1), P, is a norm on X .

Remark. (a)The above P X—R. is the Minkowski

functional of the convex balanced absorbing set A .
={xeX| o(x)> e}
(b) The  function P:X—R,  defined by

P(x) =N {PLx) | e=(0,1)} is a
proof is clear.

seminorm on X. The

3. Main results

In this section, we observe a relation between the
equivalence of fuzzy norms and that of induced crisp norms
on a linear space. We begin with the following theorem.

Theorem 3.1 Let 0,0, be two fuzzy norms on a vector
space X and O (0,1). If 0N 01 (0) <o (%) for all xeX,
then for every e=(0, ), PL(x) > Pi(x) for all xeX.

proof. Since ONo (%) <p z(x) for all xeX, for every
0, ONte (D) <to (0 Let e=(0,0) and reX be
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fixed. Since ONto(x) > e implies to,(x) > ¢,
{01 OAto (x) >e} is a subset of {£20] Fo(x) el
Whence

Pl(x) = inf{>0 | to,(x) > &}
= inf {0 | OAto (x) > &}
=inf {0 | to,(x) > €}
= P%(x).

This completes the proof.

Theorem 32 Let o, and 23 be two equivalent fuzzy
norms on a linear space X. then for every e= (0,1), the

. . 1 2 .
induced crisp norms P, and P’ are equivalent.

proof. Let e=(0,1) and &= (e,1). Then there exists a
positive  real number s=s(6)>1 such  that
NP 1(sx)<p,(x) and ONp,(sx)<p(x) for all x=X.

By the preceding theorem, P%(x) <sP'.(x) for all x=X and
Plx) <sP’(x)  for all xeX  And  so

%Pi(x) <SP0 <sPUXD) for all x=X. That is, two

induced crisp norms P%. and PZ% are equivalent for every

e= (0,1). This completes the proof.

Remark, Consider the following two fuzzy norms on RZ.
Let 0 and 0 be defined as o ,(x,¥) = x p(x,%) where B
is the closed unit ball of F2

1
1+ (x%4+9?).

Then it is clear that two fuzzy norms o, 0 are not
equivalent. Since every two norms defined on a finite
dimensional vector space are equivalent, the converse of the
preceding theorem is not true. By reason of the above
description, we prove the converse of the theorem under
sufficiently restricted conditions. We begin with the following
Lemma.

and Pz(x,y) =

Lemma 3.3 Let p be a fuzzy seminorm on a linear space
X and po(x) = inf {o(tx) | 0<t1}for all xeX. If xo=X
and 0(x¢)<e<1, then Plxg)> 1.

proof. Since P (xo) =A{>0 | to(x)> e} 21, we will

show that P .(x)#1. For this, let P.(x¢)=1. Then
tolxg)>e for all #>1. Since p(x) = inf {o() | 0<#{1}
for all x= X,

plx o) = N{plsxy) | 0<s<1}
= ANA{to(xy) | t> 1}
=e

which contradicts the fact €> o(x ). Therefore P (xy)> 1.
This completes the proof.



Following example shows that the condition that
o(x) = inf{o(tx) | 0<1<1} for all xeX, in the hypothesis
of the preceding lemma, is essential. Let a fuzzy norm p is
given on a real line by

1 on (-1,
+ on [—2,~11U01,2]
pz)= 0 otherwise

-2
and €= 73. Then p(1)<e but P (1)=1,

Theorem 34 Let ©,, 03 be two fuzzy seminorms on a
linear space X and for every x in X ,

oo(x) = inf{p,(tx) | 0<t<1}. If for every

P'(x) 2P%x) for all xeX, then for every xeX,
Ne (%) < p,(x),
proof. Suppose that there exists y=X such that

0 2(N<ONP ((3). Let 05(9)<e< /N0 () be given. Then

CPAy) = A0 | to,(3) ) e}

mf{ 0| Ot (v) > e} <1.

“Since PZ(3) > 1 by above Lemma , P%(») > P.(3) which
contradicts that for every e < (0, 6), PL(x) <PL(%) for all

xeX. Therefore O0No (%) < p,(x) for all xe= X.This
completes the proof.

Theorem 3.5 Let ©,, 03 be fuzzy norms and for every
i=1,2 efo) =inf{o{t) | 0<K1} for all xeX If
m, M>0 that for every e=(0,1),
mP (%) <P%x) <MP'(x) for all x=X, then 0, and 0>
are equivalent.

there exists such

proof. Let 6=(0,1). Since for every e=(0, ),
mP'(x) <P%(%) and P%(x) <MP.(x)for all xe X, by the
above theorem, we get '

9/\02(—71,196)301(96) for all xe X and
ONo (Mx) < p (%) for all xe X

1
Take !~ maX{% M} then 0Ap,(tx)<p,(x) and

N0 [(tx)<p4(x) for all x= X,
This completes the proof.

Proposition 3.6 [7]. Let (V, T) be a topological linear
space over K, And let BCV be a convex balanced
absorbing set, and let q be the Minkowski functional of B.
Then ¢ is a seminorm and

(@) ¢: V—R is continuous if and only if (< ini(B).

(b) If B is bounded, then q is a norm.

Theorem 3.7 [8] Let o be a lower semicontinuous fuzzy

e=(0,0) .

Some properties of equivalent fuzzy norms

norm on a normed linear space X , and have the bounded
support: {x= X | p(x) >0} is bounded. Then p is equivalent
to the fuzzy norm X 5 where B is the closed unit ball of X

By Theorem 3.2 and Proposition 3.6 and Theorem 3.7, we
obtain the following theorem.

Theorem 3.8 Let (X, |.l) be a normed linear space.
Let o be a lower semicontinuous fuzzy norm on X and have
the bounded support. Then every P. with (<e<1 is
equivalent to the norm | . |f.

The lower semicontinuity of o, in the hypothsis of
Theorem 3.7, is an essential condition which guarantees the
continuity of P. where 0 e<1.
simicontinuity of p, in the finite dimensional case, we prove
the next theorem which is our last result.

Removing the lower

Theorem 39. Let p be a fuzzy norm on a finite
dimensional vector space (X, | .| ). Then o is equivalent to
X p where B is the closed unit ball of X if and only if the
support of p is bounded.

Proof. Suppose that o has the bounded support. Let
0<(0,1) be given. Since p is a fuzzy norm in X, the set
Ap,={xeX| o(x) >0} is convex balanced and absorbing,
and P4 is the Minkowski functional of A 4 Since every two
norms on a finite dimensional vector space are equivalent and
Py(X,Pp)—K is Po(X,l.1D—K is
continuous.

By Proposition 3.6, zero vector 0 is an interior point of
Ay Thus there exists £;>0 such that ¢7'BCA , Hence
for every xeX, O/Nxg(t;x) = Oxx 5(¢, x) < p(x).

continuous,

Since p has the bounded support , there exists ;>0 such
that  suppoCt,B and so Nxll >ty implies p(x) = 0.
Therefore o(t2%) <x 5(x) for all xe X. Take f,=¢,Vi,
Then ONAxp(tox)<0o(x) and ONo(t,2)<x5(x) for all
xe X. This proves that o and X g are equivalent.

For the opposite direction, let o and X g be equivalent.

Let a 8=(0,1) be given. Then there exists ¢>( such that
ONe(22) < x f(x)for all xe X. From this fact, we get that if
0<p(x) then % 5(x) >0, Equivalently the support of o is a

subset of tB. Hence po has the bounded support. This
completes the proof. :
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