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Abstract

A neural networks (NN) saturation compensation scheme for DC motor systems is presented. The scheme that leads to stability,
command following and disturbance rejection is rigorously proved. On-line weights tuning law, the overall closed loop performance
and the boundness of the NN weights are derived and guaranteed based on Lyapunov approach. The simulation and experimental
results show that the proposed scheme effectively compensate for saturation nonlinearity in the presence of system uncertainty.
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1. Introduction

Saturation, deadzone, backlash, and hysteresis, are most
common actuator nonlinearities in practical control systems.
Saturation nonlinearity exists in almost real control system. The
actuator saturation not control
performance causing large overshoots and large settling times,

but also lead to instability since the feedback loop is broken in

only deteriorates the

such situations. A general term for these phenomena is the reset
windup and a structure that prevents such an undesirable
behavior is called the anti reset windup configuration. To
tackle this problem, Astrom and Wittenmark [1] developed the
general actuator saturation compensator scheme; Hanus and
Peng [2] addressed a controller based on the conditional
technique; Walgama and Sternby [3] developed an observer-
based anti-windup compensator; Niu [4] designed a robust anti-
windup controller based on the Lyapunov approach to
accommodate the constraints and disturbance; Chan [5]
investigated the actuator saturation stability issues related to the
number of the integrators in the plant; Annaswamy et al. [6]
addressed an adaptive controller to accommodate saturation
constraints in the presence of time delays, which is applicable
to 1st, 2nd and n-th order plants.

In some recent work several rigorously derived adaptive
nonlinearity
compensation [7]. Compensation for non-symmetric deadzone

schemes have been given for actuator
is considered in [8] and [9] for linear systems and in [10] for
nonlinear systems in Brunovsky form with known nonlinear
functions. Backlash compensation is addressed in [11], and
hysteresis in [12].

Much has been written on intelligent control using neural
networks (NN). With the universal approximation property and
learning capability [13], The NN has been proven to be a

powerful tool to control complex dynamic nonlinear systems
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with parameter uncertainty. Recently, -a large amount of
research [14-17] has used NN to synthesize the feedback
linearization for the feedback linearizable system [18] and to
incorporate the Lyapunov theory in order to ensure the overall
system stabilization, command following and disturbance
rejection.

In this paper author design the NN compensation schemes
for systems with actuator saturation. A rigorous design
procedure with proofs is given that results in a PD tracking
loop with an adaptive NN system in the feedforward loop for
actuator nonlinearity compensation. NN weights are tuned on-
line, and the overall system performance is guaranteed using
Lyapunov function approach. The convergence of the NN
learning process and the boundness of the NN weights’
estimation error are all rigorously proven. Author investigates
the performance of the NN saturation compensator in a DC
motor system.

2. Neural networks

NN have been used extensively in feedback control systems
[19,20]. Most applications are ad hoc with no demonstrations
of stability. The stability proofs that do exist rely almost
invariably on the universal approximation property for NN [13].

The three layer NN in Fig. 1 consists of an input layer, a
hidden layer, and an output layer. The hidden layer has L
neurons, and the output layer has m neurons. The multi layer
NN is a nonlinear mapping from input space R’ into output
space R”.

The NN output yis a vector with m components that are
determined in terms of the » components of the input vector
x by the equation

L b
V= 2w (Y vx + Vi) + Wyl i=12,..,m €))
= =
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where o() is the hyperbolic tangent function, v, , the
interconnection weights from input to hidden layer, w, ,

interconnection weights from hidden to output layer. The
threshold offsets are denoted by v,,, w

i "

Fig. 1. Neural networks

Fig. 2. Saturation nonlinearity.

By collecting all the NN weights v, , w, into matrices

V7, W7, the NN equation may be written in terms of vectors as
y=WT'o(V'x). )

The threshold are included as the first column of the weight
matrices W' ,v7T ; to accommodate this, the vector and o()
need to be augmented by placing a ‘1’ as their first element(e.g.

x=[1 X X, o
sufficient generality if o() is taken as a diagonal function

x,)7). In this equation, to represent (1) one has

from R"to R', that is o(z)=diag{o(z,)} for a vector
z=[z z, - z,]'e R".

Many well-known results say that any sufficiently smooth
function ¥ can be approximated arbitrary closely on a compact
set using a three-layer NN with appropriate weights, i.e.

y=WoWV x)+&(x) 3)

where the &e(x) is the NN approximation error, and
lle(x)li<e, on a compact set S [21, 22]. The first layer
weights V are selected randomly and will not tuned. The
second layer weights W are tunable.
weights W are ideal target weights, and it is assumed that
they are bounded such that IIW I<W,, .

The approximating
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3. Actuator saturation

In this section author presents the saturation model. Fig. 2 is
the linear saturation T =sat(u), where T and u are scalars.
T,. and T are the actuator operation limits.

max

The output of the actuator T() is as follows:
T u®)2T, Im
T=im-u@): T, Im<u)<T, Im 4)

T, uw@®<T, Im

min

where T is the chosen positive, T,

min

is the negative
saturation limits. If u(r) falls outside the range of the actuator,
actuator saturation occurs, and the control input u(s) can not
be fully implemented by the actuator. The control that can not
implemented by the actuator, denoted as 8(¢) , is given by
() =T()—u(®t)
T —u®): u@®2T,  Im
=d(m-Du@): T, Im<u@®)<T, /m’
T . —u(t)y: u@)<T, /m

min

&)

From (5), the nonlinear actuator saturation can be described
using &(2) . In this paper, NN is used to approximate &(z) .

4. NN Saturation compensation of a DC motor
system '

In this section author will show how to provide the NN
saturation compensation in DC motor systems. The proposed
control structure is shown in Fig. 3. Torque control actuators
are subject to saturation limits. Author shows to tune or learn
the NN weights for saturation actuator so that the tracking error
is guaranteed small and all internal states are bound.

The dynamics of system can be written as

Jy+By+T, +T, =T (6)

where y(r) is the system output , Jis the mass, B is the
damping, 7, is the nonlinear function, T , is the bounded
unknown disturbance, and 7 is the actuator control torque.
It is assumed that IT ,<7,, with 7,, a known positive
constant.

Given the reference signal y, , the error is expressed by
e=y, -y . Then tracking error is defined as

r=é+Ae @

where A is a design parameter.

Differentiating tracking error and using (6), the system
dynamics may be written in terms of the tracking error as:

Ji=—=Br—T+ f(x)+T, (8)

where the nonlinear plant function is defined as
F)=J(3,+A) +B(y, + Ae)+T; . )
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The termx contains all the time signals needed to compute
f(, and may be defined for instance as x=[y, y, ¥, e eI’ .
It is noted that the function f(x) contains all the potentially
unknown functions, except for J, B appearing in (8) —
these latter terms cancel out in the stability proof.

Actuator control torques, T , is subject to saturation
constraints (4). In this paper, author use intelligent control
techniques for saturation compensation. It shows that the NN
control results can be used for saturation compensation in DC

motor systems.

Ya €
(K]
i [@ DC motor system
Yu—@Z< 1A K Gl u rf LIy
f _ Js+B s

v

Fig. 3. NN saturation compensator of DC motor systems.

Considering the saturating model (5), the system dynamics is
given by
Ji=-Br+ f(x)+T,—u-6 . (10)

Choose the tracking controller as

w=f-v+K, r (1D

with f(x) , an estimate for the nonlinear terms, f(x) , v(t)
a robustifying term, and X, >0.

Applying NN universal approximation property, there exists
NN with some ideal weights W , that closely approximates the
unknown modified saturation function &

§=Wo(V x,)+e. (12)

Saturation control is given as
u=w-4, (13)
where § is the actual realization of the NN compensation
function

§=Wa(V'x,,). 14)

where the NN weights approximation error is
W=w-Ww. (15)
The NN input is selected as x,, =[y, 3, e &1 .
Substituting (13) and (14) into (10) gives the closed loop
error dynamics

Ji==Br+ f()-K,r+v-Wo(V'x,)—e+T,.  (16)

The nonlinear function f(x) is assumed to be unknown,
but a fixed estimate f(x)is assumed known such that the
function fo=fx)-Ffx , satisfies
| Fx)l [ (x), for some known bounding function £, (x).

estimation error,

The next theorem specifies robust and NN part of controller,
such that the closed loop system is bounded in the presence of
the actuator saturation in DC motor systems.

Theorem 1 : Given the system dynamics (16), select the
tracking control law (11), and the saturation compensator
(13) and (14). Choose the robustifying signal as

VD) =~(f, (1) +7,, )ﬁ . an

where f,(x) and 7, are the bounds on functional estimation
error and disturbances, respectively. Let the estimated NN
weights be provided by the NN tuning algorithm

W=oW x, ) r—kiriw (18)

where & is small scalar positive design parameter. Then the
tracking error r evolves with a practical bound given by the
right hand sides of (24)

Proof : Select the Lyapunov function candidate as

L=%Jr2+%tr(W7W) . (19)
Differentiating yields
L= Jir+%]r2 +r(WW). 20)
Using (16) and the assumption |1JI=0 yields
L=r=Br+f—K,r+v+T,—e-W oV x,)+orWW)
L=—(K,r + By + r(F +v+T, &)+ trlW (W -6 (Vx,,, )1 (21)

Applying the tuning rule (18), robustifying term (17) one has
L=—K, +B)r’ + r(f +v+ T, —)+klrirW'W)  (22)
LE—~(K, +B)yr*~Irll f, +T, 1+1rll f+T, 1
+lrle, +kirio (W™ W —W)

L<—(K, +B)IrP +lrle, +k1r W I (W, ~IW 1)
Arl{—(K, + B rl+k IW 1W,, —k IW I +£,,}

ri{—(X,; + Byl rl-k(lW II—%WM ) . (23
1
+ZkWA§ +ey)
which is guaranteed negative as long as
EW,& +&,
rizd . (24)
K,+B
or
712 1 2 k 2
(k Wi —EWM) Zsz +£,, (25)

which is equivalent to
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1

[k 1P

Z%+£N+E%
(| —— 2 | (26)

Note that stability radius may be decreased any amount by
increasing the gain X,. It is noted that PD controller does not
posses this property when saturation nonlinearity is present in
DC motor systems. Moreover, it is difficult to guarantee the
stability of such highly nonlinear system using only a PD
controller. Using the NN saturation compensation, stability of
the system is proven, and the tracking error can be kept

arbitrary small by increasing the gain X,. The NN weight

The initial
weights V are selected randomly, while the initial weights
W are to set zero. Then the PD loop in Fig. 3 holds the system
stable until the NN begins to learn. .

errors are fundamentally bounded in terms of W;,.

The proposed method utilizes an NN controller to
compensate for the saturation nonlinearity effects. Initially, the
NN controller “learns” and adjusts its weight to prevent the
control signal from being saturated. After the initial learning
period, which will be demonstrated below in the simulation, the
NN signal effectively keeps the signal within saturation bounds.
Therefore, the proposed NN control scheme presents a form of
neural network anti-windup compensation.

5. Simulation and experimental results

In this section the author illustrate the effectiveness of the
NN saturation compensator by computer simulations and
experimental results. The experimental set up is shown in Fig.
4. It consists of a DC motor with a gear and load, an encoder
and a counter for output signal, a digital-to-Analog(D/A)
converter and a servo amplifier for control signal, and an IBM
PC equipped with an Intel 8255-based interface card. The
voltage output from the computer is amplified using a pulse

An optical
is used for angular position

width-modulated amplifier. encoder with a
quadrature decoder chip
measurement. In the experimental setup, the main control
algorithm is implemented at a 100 Hz sampling rate via an IBM
PC with an Intel 486DX-66 microprocessor. The proposed
Author obtained the

parameters of the dc motor with gear and load and saturation

algorithm is written in C language.

nonlinearities as follows:
J=0.015, B=0951, 7, =036,
T.=-036, m=1. ‘ 04)
The NN has L=4 hidden layer nodes. The input to hidden
layer weights V, are initialized randomly. They are uniformly

The hidden to output
Note this weight

randomly distributed between —1 and 1.
layer weights W are initialized at zero.
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initialization will not affect system stability since the weights
W are initialized at zero, and therefore there is initially no input
to the system except for the PD loop. The PD controller
parameter are chosen as that X,=03, A=1.1. The NN
weight tuning parameter is chosen as &=0.002. Fig. 5 shows
of the closed-loop
with/without the saturation nonlinearity. It can be seen that the

the tracking performance system
saturation nonlinearity degrades the system performance.
Applying the NN compensator reduces the tracking error in Fig
6. The saturation outputs are shown in Fig. 7. Experimental
results are shown in Fig. 8-9, which show similar phenomena
to those in simulation. From the simulation and experimental
results it is clear that the proposed NN compensation is an
efficient way to compensate for saturation nonlinearity.

el BEC=D)

COUNTER| Dia —-I AMP. |
con| L)
OUTPUT CONTROL PLOTTER
SIGNAL SIGNAL I
INTERFACE | COMPUTER REF.
CARD IBM PC GENERATOR]

Fig. 4. Experimental setup.
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Fig. 5. System response with/without saturation nonlinearity.

i) reference signal, ii) without saturation, iii) with saturation
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Fig. 6. System response with an NN saturation compensator.
i) reference signal, ii) with NN compensator, iii) without NN
compensator
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Fig. 7. Saturation output. i) without saturation ii) with
saturation iii) with NN compensator
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Fig. 8. Experimental response with/without saturation
nonlinearity. i) reference signal, ii) without saturation, iii)
with saturation
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Fig. 9. Experimental response with an NN saturation
compensator. 1) reference signal, ii) with NN compensator,
iii) without NN compensator

6. Conclusions

A new technique for the NN saturation compensation has
been proposed for DC motor systems. Saturation compensation
signal is inserted into the actuator control signal. Using
nonlinear stability techniques, the bound on tracking error is
derived from the tracking error dynamics. Simulation and

experimental results show that significantly improved system

performance can be achieved by the NN saturation
compensation schemes.
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