On Fuzzy Irresolute Functions

Erdal Ekici* and Jin Han Park**

- * Department of Mathematics, Canakkale Onsekiz Mart University
- ** Division of Mathematical Sciences, Pukyong National University

Abstract

As a generalization of the notions of fuzzy α -irresolute, fuzzy preirresolute, fuzzy irresolute and fuzzy β -irresolute functions, we introduce the notion of fuzzy $\beta\alpha$ -continuous functions and investigate the relationships between fuzzy $\beta\alpha$ -continuous functions and fuzzy separation axioms.

Key words: fuzzy β -open set, fuzzy α -open set, fuzzy $\beta\alpha$ -continuity

1. Introduction and Preliminaries

The notions of fuzzy irresolute, fuzzy α -irresolute and fuzzy preirresolute functions were introduced and studied by Mukherjee and Sinha [6], Thakur and Saraf [11] and Park and Park [8], respectively.

The aim of this paper is to introduce a new class of fuzzy functions which is called $\beta\alpha$ -continuous functions including the classes of fuzzy irresolute, fuzzy α -irresolute, fuzzy pre-irresolute and fuzzy β -irresolute functions. Furthermore, we obtain basic properties of $\beta\alpha$ -continuous functions and investigate relationships between fuzzy $\beta\alpha$ -continuity and fuzzy covering properties and fuzzy $\beta\alpha$ -continuity and fuzzy separations axioms, respectively.

The class of fuzzy sets on a universe X will be denoted by I^X and fuzzy sets on X will be denoted by Greek letters as μ , ρ , η , etc. A family τ of fuzzy sets in X is called a fuzzy topology [3] for X iff $(1) \oslash X \in \tau$ (2) $\mu \land \rho \in \tau$ whenever μ , $\rho \in \tau$ and (3) $\bigvee \{\mu_a \colon \alpha \in I\} \in \tau$ whenever each $\mu_a \in \tau(\alpha \in I)$. In this case, the pair (X, τ) (or simply X) is called a fuzzy topological space (for short, fuzzy space). Every member of τ is called a fuzzy open set [7]. For a fuzzy set μ in X, int μ and $\operatorname{cl} \mu$ will denote the interior and closure of μ , respectively. A fuzzy set in X is called a fuzzy point iff it takes the value 0 for all $y \in X$ except one, say, $x \in X$. If its value at x is $\alpha(0 \land \alpha \leq 1)$, we denote this fuzzy point by x_α , where the point x is called its support [7]. For any fuzzy point x_ε and any fuzzy set μ , we write $x_\varepsilon \in \mu$ iff $\varepsilon \leq \mu(x)$.

Definition 1.1. A fuzzy set μ in X is called:

Manuscript received Feb. 28, 2005; revised Jun. 15, 2005. ** Corresponding author.

- (1) fuzzy α -open [10] if $\mu \leq \text{int cl int } (\mu)$;
- (2) fuzzy semiopen [1] if $\mu \le cl$ int (μ) ;
- (3) fuzzy preopen $[10] \mu \leq \operatorname{int} \operatorname{cl}(\mu)$;
- (4) fuzzy β -open [5, 12] if $\mu \le cl$ int $cl(\mu)$.

The complement of a fuzzy α -open (resp. fuzzy semiopen, fuzzy preopen, fuzzy β -open) set is called fuzzy α -closed (resp. fuzzy semiclosed, fuzzy preclosed, fuzzy β -closed).

Definition 1.2. A fuzzy function $f: X \rightarrow Y$ is said to be:

- (1) fuzzy open [3] (resp. always fuzzy β -open) if $f(\rho)$ is fuzzy open (resp. fuzzy β -open) in Y for every fuzzy open (resp. fuzzy β -open) set ρ in X;
- (2) fuzzy irresolute [6] if $f^{-1}(\rho)$ is fuzzy semiopen in X for each fuzzy semiopen set ρ in Y;
- (3) fuzzy α -irresolute [11] if $f^{-1}(\rho)$ is fuzzy α -open in X for each fuzzy α -open set ρ in Y;
- (4) fuzzy preirresolute [8] if $f^{-1}(\rho)$ is fuzzy preopen in X for each fuzzy preopen set ρ in Y;
- (5) fuzzy β -irresolute if $f^{-1}(\rho)$ is fuzzy β -open in X for each fuzzy β -open set ρ in Y.

2. Fuzzy $\beta \alpha$ -continuous functions

Definition 2.1. A fuzzy function $f: X \to Y$ is said to be fuzzy $\beta \alpha$ -continuous if for each fuzzy point $x_{\varepsilon} \in X$ and each fuzzy α -open set ρ in Y containing $f(x_{\varepsilon})$, there exists a fuzzy β -open set μ in X containing x_{ε} such that $f(\mu) \leq \rho$.

Theorem 2.2. For a fuzzy function $f: X \rightarrow Y$, the following statements are equivalent:

- (1) f is fuzzy $\beta \alpha$ -continuous;
- (2) for every fuzzy α -open set ρ in Y, $f^{-1}(\rho)$ is fuzzy

 β -open;

(3) for every fuzzy α -closed set ρ in Y, $f^{-1}(\rho)$ is fuzzy β -closed.

Proof. (1) \Rightarrow (2): Let ρ be a fuzzy α -open set in Y and let $x_{\varepsilon} \in f^{-1}(\rho)$. Since $f(x_{\varepsilon}) \in \rho$, by (1), there exists a fuzzy β -open set $\mu_{x_{\varepsilon}}$ in X containing x_{ε} such that $\mu_{x_{\varepsilon}} \leq f^{-1}(\rho)$. We obtain that $f^{-1}(\rho) = \bigvee_{x_{\varepsilon} \in f^{-1}(\rho)} \mu_{x_{\varepsilon}}$. Thus, $f^{-1}(\rho)$ is fuzzy β -open.

- (2) \Rightarrow (1): Let ρ be a fuzzy α -open set in Y and let $f(x_{\varepsilon}) \in \rho$. We have $x_{\varepsilon} \in f^{-1}(\rho)$. By (2), $f^{-1}(\rho)$ is a fuzzy β -open set. Take $\eta = f^{-1}(\rho)$. Then $f(\eta) \leq \rho$. Thus, f is fuzzy $\beta \alpha$ -continuous.
- (2) \Rightarrow (3): Let ρ be a fuzzy α -closed set in Y. Then $Y \setminus \rho$ is fuzzy α -open. By (2), $f^{-1}(Y \setminus \rho) = X \setminus f^{-1}(\rho)$ is fuzzy β -closed.

 $(3) \Rightarrow (2)$: Similar to $(2) \Rightarrow (3)$.

Definition 2.3. A fuzzy filter base Λ is said to be fuzzy β -convergent (resp. fuzzy α -convergent) to a fuzzy point $x_{\varepsilon} \in X$ if for any fuzzy β -open (resp. fuzzy α -open) set ρ in X containing x_{ε} , there exists a fuzzy set $\mu \in \Lambda$ such that $\mu \leq \rho$.

Theorem 2.4. If a fuzzy function $f: X \to Y$ is fuzzy $\beta \alpha$ -continuous, then for each fuzzy point $x_{\varepsilon} \in X$ and each fuzzy filter base Λ in X which is β -convergent to x_{ε} , the fuzzy filter base $f(\Lambda)$ is fuzzy α -convergent to $f(x_{\varepsilon})$.

Proof. Let $x_{\varepsilon} \in X$ and Λ be any fuzzy filter base in X which is β -convergent to x_{ε} . Since f is fuzzy $\beta \alpha$ -continuous, then for any fuzzy α -open set λ in Y containing $f(x_{\varepsilon})$, there exists a fuzzy β -open set μ in X containing x_{ε} such that $f(\mu) \leq \lambda$. Since Λ is fuzzy β -convergent to x_{ε} , there exists a $\rho \in \Lambda$ such that $\rho \leq \mu$. This means that $f(\rho) \leq \lambda$ and therefore the fuzzy filter base $f(\Lambda)$ is fuzzy α -convergent to $f(x_{\varepsilon})$.

Remark 2.5. For $f: X \rightarrow Y$, the following diagram holds:

The following examples show that these implications are not reversible.

Example 2.6. Let $X = \{a, b\}, Y = \{x, y\}$ and λ , μ are fuzzy sets defined as follows:

$$\lambda(a) = 0.3, \ \lambda(b) = 0.6,$$

$$\mu(x) = 0.7$$
, $\mu(y) = 0.5$.

Let $\tau_1 = \{X, \emptyset, \lambda\}$ and $\tau_2 = \{Y, \emptyset, \mu\}$. Then the fuzzy function $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ defined by f(a) = x and f(b) = y is fuzzy $\beta \alpha$ -continuous but neither fuzzy α -irresolute nor irresolute.

Example 2.7. In the above example, we take

$$\mu(x) = 0.7, \ \mu(y) = 0.6.$$

Then the fuzzy function $f:(X, \tau_1) \rightarrow (Y, \tau_2)$ defined by f(a) = x and f(b) = y is fuzzy $\beta \alpha$ - continuous but neither fuzzy preirresolute nor β - irresolute.

Theorem 2.8. Let $f: X \to Y$ be a fuzzy function and let $g: X \to X \times Y$ be the fuzzy graph function of f [1], defined by $g(x_{\varepsilon}) = (x_{\varepsilon}, f(x_{\varepsilon}))$ for each $x_{\varepsilon} \in X$. If g is fuzzy $\beta \alpha$ -continuous, then f is fuzzy $\beta \alpha$ -continuous.

Proof. Let ρ be fuzzy α -open set in Y. Then $X \times \rho$ is fuzzy α -open set in $X \times Y$. Since g is fuzzy $\beta \alpha$ -continuous, then $f^{-1}(\rho) = g^{-1}(X \times \rho)$ is fuzzy β -open in X. Thus, f is fuzzy $\beta \alpha$ -continuous.

Definition 2.9. A fuzzy space X said to be:

- (1) fuzzy β -compact [4] (resp. fuzzy α -compact [4, 11]) if every fuzzy β -open (resp. fuzzy α -open) cover of X has a finite subcover;
- (2) fuzzy countably β -compact (resp. fuzzy countably α -compact) if every fuzzy β -open (resp. fuzzy α -open) countably cover of X has a finite subcover;
- (3) fuzzy β -Lindelof (resp. fuzzy α -Lindelof) if every cover of X by fuzzy β -open (resp. fuzzy α -open) sets has a countable subcover.

Theorem 2.10. Let $f: X \rightarrow Y$ be a fuzzy $\beta \alpha$ -continuous surjection. Then the following statements hold:

- (1) If X is fuzzy β -compact, then Y is fuzzy α -compact.
- (2) If X is fuzzy β -Lindelof, then Y is fuzzy α -Lindelof.
- (3) If X is fuzzy countably β -compact, then Y is fuzzy countably α -compact.

Proof. We prove only (1). Let $\{\mu_{\alpha} \colon \alpha \in I\}$ be any fuzzy α -open cover of Y. Since f is fuzzy $\beta\alpha$ - continuous, then $\{f^{-1}(\mu_{\alpha}) \colon \alpha \in I\}$ is a fuzzy β - open cover of X. Since X is fuzzy β -compact, there exists a finite subset I_0 of I such that $X = \bigvee \{f^{-1}(\mu_{\alpha}) \colon \alpha \in I_0\}$. Then we have $Y = \bigvee \{\mu_{\alpha} \colon \alpha \in I_0\}$ and thus Y is fuzzy α -compact.

Definition 2.11. A fuzzy space X is said to be fuzzy β -

connected (resp. fuzzy connected [9]) if it cannot be expressed as the union of two nonempty, disjoint fuzzy β -open (resp. fuzzy open) sets.

Theorem 2.12. If $f: X \rightarrow Y$ is fuzzy $\beta \alpha$ -continuous surjective function and X is fuzzy β - connected space, then Y is fuzzy connected space.

Proof. Suppose that Y is not fuzzy connected space. Then there exists nonempty disjoint fuzzy open sets β and μ such that $Y = \beta \vee \mu$. Hence, β and μ are fuzzy α -open sets in Y. Since f is fuzzy $\beta \alpha$ -continuous, $f^{-1}(\beta)$ and $f^{-1}(\mu)$ are fuzzy β -closed and β -open. Moreover, $f^{-1}(\beta)$ and $f^{-1}(\mu)$ are nonempty disjoint and $X = f^{-1}(\beta) \vee f^{-1}(\mu)$. This shows that X is not fuzzy β -connected. This is a contradiction. Therefore, Y is fuzzy connected.

Definition 2.13. A fuzzy space X is called hyperconnected [2] if every fuzzy open set is dense.

Remark 2.14. The following example shows that fuzzy $\beta\alpha$ -continuous surjection do not necessarily preserve fuzzy hyperconnectedness.

Example 2.15. Let $X = \{a, b\}$, $Y = \{x, y\}$ and λ , μ are fuzzy sets defined as follows:

$$\lambda(a) = 0.3, \ \lambda(b) = 0.6,$$

 $\mu(x) = 0.5, \ \mu(y) = 0.5.$

Let $\tau_1 = \{X, \emptyset, \lambda\}$ and $\tau_2 = \{Y, \emptyset, \mu\}$. Then the fuzzy function $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ defined by f(a) = x and f(b) = y is fuzzy $\beta \alpha$ -continuous surjective and (X, τ_1) is hyperconnected. But (Y, τ_2) is not hyperconnected.

3. Several properties

In this section, we investigate the relationships between fuzzy $\beta\alpha$ -continuous functions and separation axioms and those graphs.

Definition 3.1. A fuzzy space X is said to be fuzzy β - T_1 (resp. fuzzy α - T_1) if for each pair of distinct fuzzy points x_{ε} and y_{ν} of X, there exist fuzzy β -open (resp. α -open) sets β and μ containing x_{ε} and y_{ν} , respectively, such that $y_{\nu} \notin \beta$ and $x_{\varepsilon} \notin \mu$.

Theorem 3.2. If $f: X \to Y$ is a fuzzy $\beta \alpha$ -continuous injection and Y is fuzzy $\alpha - T_1$, then X is fuzzy $\beta - T_1$.

Proof. Suppose that Y is fuzzy α - T_1 . For any distinct fuzzy points x_{ε} and y_{ν} in X, there exist fuzzy α -open sets μ and ρ in Y such that $f(x_{\varepsilon}) \in \mu$, $f(y_{\nu}) \notin \mu$, $f(x_{\varepsilon}) \notin \rho$

and $f(y_{\nu}) \in \rho$. Since f is fuzzy $\beta \alpha$ -continuous, $f^{-1}(\mu)$ and $f^{-1}(\rho)$ are β -open sets in X such that $x_{\varepsilon} \in f^{-1}(\mu)$, $y_{\nu} \notin f^{-1}(\mu)$, $x_{\varepsilon} \notin f^{-1}(\rho)$ and $y_{\nu} \in f^{-1}(\rho)$. This shows that X is fuzzy β - T_1 .

Definition 3.3. A fuzzy space X is said to be fuzzy β - T_2 (resp. fuzzy α - T_2) if for each pair of distinct fuzzy points x_{ε} and y_{ν} of X, there exist disjoint fuzzy β -open (resp. fuzzy α -open) sets β and μ in X such that $x_{\varepsilon} \in \beta$ and $y_{\nu} \in \mu$.

Theorem 3.4. If $f: X \rightarrow Y$ is a fuzzy $\beta \alpha$ -continuous injection and Y is fuzzy $\alpha - T_2$, then X is fuzzy $\beta - T_2$.

Proof. For any pair of distinct fuzzy points x_{ε} and y_{ν} in X, there exist disjoint fuzzy α -open sets β and μ in Y such that $f(x_{\varepsilon}) \in \beta$ and $f(y_{\nu}) \in \mu$. Since f is fuzzy $\beta \alpha$ -continuous, $f^{-1}(\beta)$ and $f^{-1}(\mu)$ is fuzzy β -open in X containing x_{ε} and y_{ν} , respectively. Then we obtain $f^{-1}(\beta) \wedge f^{-1}(\mu) = \emptyset$. This shows that X is fuzzy $\beta \cdot T_2$.

Definition 3.5. A fuzzy space X is said to be fuzzy strongly α -regular (resp. fuzzy strongly β - regular) if for each fuzzy α -closed (resp. fuzzy β -closed) set η and each fuzzy point $x_{\varepsilon} \in \eta$, there exist disjoint fuzzy open sets β and μ such that $\eta \leq \beta$ and $x_{\varepsilon} \in \mu$.

Definition 3.6. A fuzzy space X is said to be fuzzy strongly α -normal (resp. fuzzy strongly β -normal) if for every pair of disjoint fuzzy α -closed (resp. fuzzy β -closed) sets η_1 and η_2 in X, there exist disjoint fuzzy open sets β and μ such that $\eta_1 \leq \beta$ and $\eta_2 \leq \mu$.

Theorem 3.7. If $f: X \rightarrow Y$ is fuzzy $\beta \alpha$ -continuous, fuzzy open bijection and X is a fuzzy strongly β -regular space, then Y is fuzzy strongly α -regular.

Proof. Let η be fuzzy α -closed set in Y and $y_{\nu} \notin \eta$. Take $y_{\varepsilon} = f(x_{\varepsilon})$. Since f is fuzzy $\beta \alpha$ -continuous, $f^{-1}(\eta)$ is a fuzzy β -closed set. Take $\lambda = f^{-1}(\eta)$. We have $x_{\varepsilon} \notin \lambda$. Since X is fuzzy strongly β -regular, there exist disjoint fuzzy open sets β and μ such that $\lambda \leq \beta$ and $x_{\varepsilon} \in \mu$. Thus, we obtain that $\eta = f(\lambda) \leq f(\beta)$ and $y_{\varepsilon} = f(x_{\varepsilon}) \in f(\mu)$ such that $f(\beta)$ and $f(\mu)$ are disjoint fuzzy open sets. This shows that Y is fuzzy strongly α -regular.

Theorem 3.8. If $f: X \rightarrow Y$ is fuzzy $\beta \alpha$ -continuous, fuzzy open bijection and X is a fuzzy strongly β -normal space, then Y is fuzzy strongly α -normal.

Proof. Let η_1 and η_2 be disjoint fuzzy α -closed sets in

Y. Since f is fuzzy $\beta\alpha$ -continuous, $f^{-1}(\eta_1)$ and $f^{-1}(\eta_2)$ are fuzzy β -closed sets. Take $\beta=f^{-1}(\eta_1)$ and $\mu=f^{-1}(\eta_2)$. We have $\beta\wedge\mu=\emptyset$. Since X is fuzzy strongly β -normal, there exist disjoint fuzzy open sets λ and ρ such that $\beta\leq\lambda$ and $\mu\leq\rho$. We obtain that $\eta_1=f(\beta)\leq f(\lambda)$ and $\eta_2=f(\mu)\leq f(\rho)$ such that $f(\lambda)$ and $f(\rho)$ are disjoint fuzzy open sets. Thus, Y is fuzzy strongly α -normal.

Recall that for a fuzzy function $f: X \to Y$, the subset $\{(x_{\varepsilon}, f(x_{\varepsilon})) : x_{\varepsilon} \in X\} \leq X \times Y$ is called the graph of f and is denoted by G(f).

Definition 3.9. A graph G(f) of a fuzzy function $f: X \to Y$ is said to be fuzzy β - α -closed if for each $(x_{\varepsilon}, y_{\nu}) \in (X \times Y) \setminus G(f)$, there exist a fuzzy β -open set β in X containing x_{ε} and a fuzzy α -open set μ in Y containing y_{ν} such that $(\beta \times \mu) \wedge G(f) = \emptyset$.

Lemma 3.10. A graph G(f) of $f: X \to Y$ is fuzzy $\beta - \alpha$ -closed in $X \times Y$ if and only if for each $(x_{\varepsilon}, y_{\nu}) \in (X \times Y) \setminus G(f)$, there exist a fuzzy β -open set β in X containing x_{ε} and a fuzzy α -open set μ in Y containing y_{ν} such that $f(\beta) \wedge \mu = \emptyset$.

Theorem 3.11. If $f: X \to Y$ is fuzzy $\beta \alpha$ -continuous and Y is fuzzy α -Hausdorff, then G(f) is fuzzy β - α -closed in $X \times Y$.

Proof. Let $(x_{\varepsilon},y_{\nu}) \in (X \times Y) \setminus G(f)$. Then $f(x_{\varepsilon}) \neq y_{\nu}$. Since Y is fuzzy α -Hausdorff, there exist disjoint fuzzy α -open sets β and μ in Y such that $f(x_{\varepsilon}) \in \beta$ and $y_{\nu} \in \mu$. Since f is fuzzy $\beta\alpha$ -continuous, there exists a β -open set ρ in X containing x_{ε} such that $f(\rho) \leq \beta$. Therefore, we obtain $y_{\nu} \in \mu$ and $f(\rho) \wedge \mu = \emptyset$. This shows that G(f) is fuzzy β - α -closed.

Theorem 3.12. Let $f: X \to Y$ has a fuzzy β - α -closed graph G(f). If f is injective, then X is fuzzy β - T_1 .

Proof. Let x_{ε} and y_{ν} be any two distinct fuzzy points of X. Then, $(x_{\varepsilon}, f(y_{\nu})) \in (X \times Y) \setminus G(f)$. By definition of fuzzy β - α -closed graph, there exist a fuzzy β -open set β in X and a fuzzy α -open set μ in Y such that $f(x_{\varepsilon}) \in \beta$, $y_{\nu} \in \mu$ and $f(\rho) \wedge \mu = \emptyset$ and hence $\beta \wedge f^{-1}(\mu) = \emptyset$. Therefore, we have $y_{\nu} \notin \beta$. This implies that X is fuzzy β - T_1 .

Theorem 3.13. Let $f: X \to Y$ has a fuzzy β - α -closed graph G(f). If f is surjective always fuzzy β -open function, then Y is fuzzy β - T_2 .

Proof. Let y_{ν} and y_{ξ} be any distinct points of Y. Since f is surjective, $f(x_{\nu}) = y_{\nu}$ for some $x_{\nu} \in X$ and $(x_{nu}, y_{\xi}) \in (X \times Y) \setminus G(f)$. By the fuzzy β - α -closedness of graph G(f), there exists a fuzzy β -open set β in X and a fuzzy α -open set μ in Y such that $x_{\nu} \in \beta$, $y_{\xi} \in \mu$ and $(\beta \times \mu) \wedge G(f) = \emptyset$. Then, we have $f(\beta) \wedge \mu = \emptyset$. Since f is always fuzzy β -open, then $f(\beta)$ is fuzzy β -open such that $f(x_{\nu}) = y_{\nu} \in f(\beta)$. This implies that Y is fuzzy β - T_2 .

4. References

- [1] K.K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, *J. Math. Anal. Appl.*, 82(1981), 14-32.
- [2] M. Caldas, G. Navalagi and R. Saraf, On fuzzy weakly semiopen functions, *Proyectiones Revista de Matematica*, 21 (2002), 51-63.
- [3] C.L. Chang, Fuzzy topological spaces, *J. Math. Anal. Appl.*, 24 (1968), 182-190.
- [4] I.M. Hanafy, A class of strong forms of fuzzy complete continuity, *Fuzzy Sets and Systems*, 90 (1997), 349-353.
- [5] A.S. Mashhour, M. H. Ghanim and M. A. F. Alla, On fuzzy non-continuous mappings, *Bull. Cal. Math. Soc.*, 78 (1986), 57-69.
- [6] M.N. Mukherjee and S.P. Sinha, On weaker forms of fuzzy continuous and fuzzy open mappings on fuzzy topological spaces, *Fuzzy Sets and Systems*, 32 (1989), 103-114.
- [7] P. Pao-Ming and L. Ying-Ming, Fuzzy Topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76 (1980), 571-599.
- [8] J.H. Park and B.H. Park, Fuzzy preirresolute mappings, *Pusan-Kyongnam Math. J.*, 10 (1995), 303-312.
- [9] K.S. Raja Sethupathy and S. Laksmivarahan, Connectedness in fuzzy topology, *Kybernetika*, 13 (3) (1977), 190-193.
- [10] A.S. B. Shahna, On fuzzy strongly semi-continuity and precontinuity, *Fuzzy Sets and Systems*, 44 (1991), 303-308.
- [11] S.S. Thakur and R.K. Saraf, α-compact fuzzy topological space, *Mathematica Bohemica*, 120 (3) (1995), 299-303.
- [12] S.S. Thakur and S. Singh, Fuzzy semi-preopen sets and fuzzy semi-precontinuity, Fuzzy Sets and Systems, 98 (1998), 383-391.

Erdal Ekici

Present: Prof. in Department of Mathematics, Canakkale Onsekiz Mart University

Research interest: Fuzzy topology, Intuitionistic fuzzy metric, General topology

International Journal of Fuzzy Logic and Intelligent Systems, vol. 5, no. 2, June 2005

 $E\text{-mail}\ :\ eekici@comu.edu.tr$

Jin Han Park

1994~present: Prof. in Division of Mathematical Sciences,

Pukyong National University

Research interest: Fuzzy topology, Intuitionistic fuzzy metric,

General topology

Phone : +82-51-620-6326 Fax : +82-51-611-6356 E-mail : jihpark@pknu.ac.kr