DOI QR코드

DOI QR Code

Central limit theorems for fuzzy random sets

퍼지 랜덤 집합에 대한 중심극한정리

  • Kwon Joong-Sung (Dept. of Mathematics, Sunmoon University) ;
  • Kim Yun-Kyong (Dept. of Information & Communication Engineering, Dongshin University) ;
  • Joo Sang-Yeol (Dept. of Statistics, Kangwon National University) ;
  • Choi Gyeong-Suk (Institute of Basic Science, Kangwon National University)
  • Published : 2005.06.01

Abstract

The present paper establishes the improved version of central limit theorem for sums of level-continuous fuzzy set-valued random variables as a generalization of central limit theorem for sums of independent and identically distributed set-valued random variables.

이 논문에서는 서로 독립이고 동일한 분포를 갖는 집합치 랜덤 변수의 합에 대한 중심극한정리의 일반화로서, 수준연속인 퍼지 집합치 랜덤 변수의 합에 대한 중심극한정리를 연구하였다.

Keywords

References

  1. A. Arujo and E. Gine, The central limit theorems for real and Banach valued random variables, New York, John Wiley & Sons, 1980.
  2. N. Cressie, A central limit theorem for random sets, Z. Wahrsch. Verw. Geb. 49 (1979), 37-47 https://doi.org/10.1007/BF00534339
  3. G. Debreu, Integration of correspondences, Proc. Fifth Berkley Symp. on Math. Statist. Prob. Vol. 2 (1966), 251-372.
  4. P. Diamond and P. Kloeden, Metric Spaces of Fuzzy Sets: Theory and Applications, World Scientific, London, 1994.
  5. E. Gine, M. G. Hahn and J. Zinn, Limit theorems for random sets: an application of probability in Banach space results, Lecture Notes in Mathematics, Vol 990, pp.112-135, Springer-Verlag, Berlin, 1983. https://doi.org/10.1007/BFb0064267
  6. R. Goetschel and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems 18 (1986), 31-43. https://doi.org/10.1016/0165-0114(86)90026-6
  7. M. G. Hahn, Conditions for sample- continuity and the central limit theorem. Ann. Probab. 5 (1977), 351-136. https://doi.org/10.1214/aop/1176995796
  8. N. C. Jain an M. B. Marcus, Central limit theorem for C(S)-valued random variables, J. Funct. Anal. 19 (1975), 216-231 https://doi.org/10.1016/0022-1236(75)90056-7
  9. S. Y. Joo and Y. K. Kim, Topological properties on the space of fuzzy sets, J. Math. Anal. Appl. 246 (2000), 576-590. https://doi.org/10.1006/jmaa.2000.6820
  10. S. Y. Joo, Y. K. Kim. J. S. Kwon and G. S. Choi, Convergence in distribution for level-continuous fuzzy random sets, Fuzzy Sets and Systems, in press
  11. Y. K. Kim, Measurability for fuzzy valued functions, Fuzzy Sets and Systems 129 (2002), 105-109 https://doi.org/10.1016/S0165-0114(01)00121-X
  12. E. P. Klement, M. L. Puri and D. A. Ralescu, Limit theorems for fuzzy random variables, Proc. Roy. Soc. London Ser. A 407 (1986), 171-182 https://doi.org/10.1098/rspa.1986.0091
  13. V. Kratschmer. Limit theorems for fuzzy random variables, Fuzzy Sets and Systems 126 (2002), 253-263 https://doi.org/10.1016/S0165-0114(00)00100-7
  14. R. Lowen, Convex fuzzy sets, Fuzzy Sets and Systems 3 (1980), 291-310 https://doi.org/10.1016/0165-0114(80)90025-1
  15. M. L. Puri and D. A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986), 402-422
  16. H. Roman-Flores and M. Rojas-Medar, Embedding of level-continuous fuzzy sets on Banach spaces, Inform. Sci. 144 (2002), 227-247 https://doi.org/10.1016/S0020-0255(02)00182-2
  17. W. Weil, An application of the central limit theorem for Banach space-valued random variables to the theory of random sets, Z. Wahrsch. Verw. Geb. 60 (1982), 203-208 https://doi.org/10.1007/BF00531823
  18. H. C. Wu, The central limit theorems for fuzzy random variables, Inform. Sci. 120 (1999), 239-256 https://doi.org/10.1016/S0020-0255(99)00063-8

Cited by

  1. Sensitivity Analysis of Weather Variables on Offsite Consequence Analysis Tools in South Korea and the United States vol.15, pp.5, 2018, https://doi.org/10.3390/ijerph15051027