Abstract
This paper presents the separation performance of the linearly mixed image signals with additive noises by using an independent component analyses(ICAs) of the fixed-point(FP) algorithm based on Newton and secant method, respectively. The Newton's FP-ICA uses the slope of objective function, and the secant's FP-ICA also uses the tangent line of objective function. The 2 kinds of ICA have been applied to the 2 dimensional 2-image with $512\times512$ pixels. Then Gaussian noise and Laplacian noise are added to the mixed images, respectively. The experimental results show that the Newton's FP-ICA has better the separation speed than secant FP-ICA and the secant's FP-ICA has also the better separation rate than Newton's FP-ICA. Especially, the Newton and secant method gives relatively larger improvement degree in separation speed and rate as the noise increases.
본 논문에서는 선형적으로 흔합된 영상신호에 잡음이 첨가된 영상을 대상으로 뉴우턴법과 할선법의 고정점 알고리즘 독립성분분석을 적용하여 분리성능을 비교${\cdot}$검토하였다. 여기서 뉴우턴법의 고정점 알고리즘은 기울기 변화에 따른 속성을 이용하며, 할선법의 고정점 알고리즘은 접선의 변화를 이용하는 속성을 가진다. 실험에 이용된 신호는 2개의 $512\times512$ 픽셀 2차원 영상이며, 가우스 분포와 라플라스 분포의 잡음을 각각 이용하였다. 실험 결과, 원 영상을 분리하는 시간에서는 뉴우턴법의 고정점 알고리즘 독립성분분석이 할선법의 고정점 알고리즘 독립성분분석보다 보다 빠르며, 복원성능에서는 할선법의 고정점 알고리즘 독립성분분석이 더욱 우수한 특성이 있음을 알 수 있었다. 한편, 잡음이 많이 첨가될수록 뉴우턴법의 FP-ICA와 할선법의 FP-ICA사이의 추출속도와 분리성능은 더욱 더 큰 차이가 있음도 알 수 있었다.