Abstract
Historical changes of population abundances of European red mite (ERM), Panonychus ulmi (Koch), and two-spotted spider mite (TSSM), Tetranychus urticae (Koch) (Acari: Tetranychidae), were described in selected apple orchards in the National Horticultural Research Institute (NHRI, Suwon, Korea), based on research reports of the NHRI from 1958 to 1998. ERM was an abundant species up to 1970, and TSSM became a dominant species after 1980. The change occurred around mid 1970. Three hypotheses were made to explain the change: TSSM competitively replaces ERM, ground cover weeds are a major influencing factor on movement of TSSM (TSSM movement into trees is accelerated by destroying weeds), and ERM and TSSM populations are regulated by natural enemy complexes when the orchard system is not disrupted. And long-term results of the interaction between two species were projected according to the combination of different orchard management strategies: pesticide sprays (non-selective toxic pesticide spray : heavy pesticide pressure (HPP), and selective soft pesticide spray = low pesticide pressure (LPP)) and weed control methods (grass planting, and clean culture system with herbicides). In the HPP and grass planting system, ERMs are abundant because ERM can avoid competition with TSSM as movement of TSSM to trees are restricted, and natural enemy complexes are destroyed by toxic pesticides. In the HPP and clean culture system, TSSMs are abundant because TSSM moves to trees from early season and competitively replaces ERM. In the LPP and grass planting system, ERMs are abundant because movement of TSSM to trees is reduced, but they do not build up a high population density since their densities are regulated by natural enemy complexes. In the LPP and clean culture system, TSSM moves to trees and competes with ERM, but the competition pressure is reduced because population densities of mites are regulated in a lower level by natural enemy complexes. So, ERM can occurs in late season. Thus, two species can coexist temporarily with more ERM in early season and more TSSM in late season. TSSM abundant phenomenon presented in this study can be partially explained as a result of long-term interaction between ERM and TSSM under the HPP and clean culture system.
수원시 이목동에 있는 원예연구소의 사과원에서 조사한 1958년부터 1998년까지 자료를 바탕으로 사과응애와 점박이응애의 역사적 발생변동 과정을 추적하였다. 1970년까지는 사과응애가 우점하였고 1980년 이후에는 점박이응애로 우점종이 바뀌었으며, 그 변화는 1970년 중반을 전후로 나타났다. 이러한 변화를 설명하기 위하여 3가지 가정, 즉 첫째, 두 종의 경쟁에서 점박이응애가 승리한다. 둘째, 과원의 초생은 점박이응애의 수상이동 여부를 결정하는 중요한 요소이다, 즉 초생이 파괴되었을 때 점박이응애의 수상이동이 촉진된다. 셋째, 과원생태계가 교란되지 않을 때 응애류는 천적에 의하여 개체군 밀도가 조절된다 하에 약제살포(고독성 비선택적 약제 처리 및 선택적 저독성 약제처리)와 초생관리(초생재배 및 청경재배=제초제 살포)에 따른 두 종의 장기적 상호작용 결과를 추정하였다. 고독성 농약/초생재배 시스템에서는 점박이응애의 수상이동이 제한되어 사과응애는 경쟁을 피할 수 있고, 또한 천적상이 파괴되기 때문에 전 생육기간 동안 사과응애가 우점한다. 고독성 농약/청경재배 시스템에서는 계절초기부터 점박이응애가 수상으로 이동하여 사과응애를 경쟁적으로 배제시킴으로써 점박이응애가 우점한다. 저독성 농약/초생재배 시스템에서는 점박이응애의 수상이동이 제한되어 사과응애가 우점하지만 천적의 작용으로 높은 밀도를 형성하지 못한다. 저독성 농약/청경재배 시스템에서는 점박이응애가 수상으로 이동하여 사과응애와 경쟁하지만 천적의 작용으로 밀도가 낮아져서 경쟁압력이 낮아지므로 생육후기 사과응애의 발생이 가능하다. 따라서 계절초기 사과응애, 계절후기 점박이응애가 우점하는 형태로 공존할 수 있다. 본 자료에서 제시한 점박이응애 우점화 현상은 부분적으로 고독성 농약/청경재배 시스템 상태에서 두 종의 장기적 상호작용의 결과로 설명될 수 있었다.