Molecular Detection of $\alpha-Glucosidase$ Inhibitor-producing Actinomycetes

  • Hyun Chang-Gu (Laboratory of Biotech and Drug Discovery, Chem Tech Research Incorporation (C-TRI) Kowoon Institute of Technology Innovation) ;
  • Kim Seung-Young (Laboratory of Biotech and Drug Discovery, Chem Tech Research Incorporation (C-TRI) Kowoon Institute of Technology Innovation) ;
  • Hur Jin-Haeng (Laboratory of Biotech and Drug Discovery, Chem Tech Research Incorporation (C-TRI) Kowoon Institute of Technology Innovation) ;
  • Seo Myung-Ji (Laboratory of Biotech and Drug Discovery, Chem Tech Research Incorporation (C-TRI) Kowoon Institute of Technology Innovation) ;
  • Suh Joo-Won (Division of Bioscience & Bioinformatics, MyongJi University) ;
  • Kim Soon-Ok (Laboratory of Biotech and Drug Discovery, Chem Tech Research Incorporation (C-TRI) Kowoon Institute of Technology Innovation)
  • Published : 2005.06.01

Abstract

In this study, we demonstrate the use of a PCR-based method for the detection of the specific genes involved in natural-product biosynthesis. This method was applied, using specifically designed PCR primers, to the amplification of a gene segment encoding for sedo-heptulose 7-phosphate cyclase, which appears to be involved in the biosynthetic pathways of $C_7N$ aminoacyclitol or its keto analogue-containing metabolites, in a variety of actinomycetes species. The sequences of DNA fragments (about 540 bp) obtained from three out of 39 actinomycete strains exhibited a high degree of homology with the sedo-heptulose 7-phosphate cyclase gene, which has been implicated in acarbose biosynthesis. The selective cultivation conditions of this experiment induced the expression of these loci, indicating that the range of $C_7N$ aminoacyclitol or its keto analogue-group natural products might be far greater than was previously imagined. Considering that a total of approximately 20 $C_7N$ aminoacyclitol metabolites, or its keto analogue-containing metabolites, have been described to date, it appears likely that some of the unknown loci described herein might constitute new classes of $C_7N$ aminoacyclitol, or of its keto analogue-containing metabolites. As these metabolites, some of which contain valienamine, are among the most potent antidiabetic agents thus far discovered, the molecular detection of specific metabolite-producing actinomycetes may prove a crucial step in current attempts to expand the scope and diversity of natural-product discovery.

Keywords

References

  1. Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Bentley, S.D., K.F. Chater, A.M. Cerdeno-Tarraga, G.L. Challis, N.R. Thomson, K.D. James, D.E. Harris, M.A. Quail, H. Kieser, D. Harper, A. Bateman, S. Brown, G. Chandra, C.W. Chen, M. Collins, A. Cronin, A. Fraser A. Goble, J. Hidalgo, T. Hornsby, S. Howarth, C.H. Huang, T. Kieser, L. Larke, L. Murphy, K. Oliver, S. O'Neil, E. Rabbinowitsch, M.A. Rajandream, K. Rutherford, S. Rutter, K. Seeger, D. Saunders, S. Sharp, R. Squares, S. Squares, K. Taylor, T. Warren, A. Wietzorrek, J. Woodwardm, B.G. Barrell, J. Parkhill, and D.A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141-147 https://doi.org/10.1038/417141a
  3. Chen, X., Y. Fan, Y. Zheng, and Y. Shen. 2003. Properties and production of valienamine and its related analogues. Chem. Rev. 103, 1955-1977 https://doi.org/10.1021/cr0102260
  4. Dahlqvist, A. 1970. Assay of intestinal dissacharidase. Enzymol. Biol. Clin. 11, 52-56 https://doi.org/10.1159/000458348
  5. Donadio, S., M. Sosio, and G. Lancini. 2002. Impact of the first Streptomyces genome sequence on the discovery and production of bioactive substances. Appl. Microbiol. Biotechnol. 60, 377-380 https://doi.org/10.1007/s00253-002-1143-0
  6. Dong, H., T. Mahmud, I. Tornus, S. Lee, and F.G. Floss. 2001. Biosynthesis of the validamycins: identification of intermediates in the biosynthesis of validamycin A by Streptomyces hygroscopicus var. limoneus. J. Am. Chem. Soc. 123, 2733-2742 https://doi.org/10.1021/ja003643n
  7. Higgins, D.G. and P.M. Sharp. 1988. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 73, 237-244 https://doi.org/10.1016/0378-1119(88)90330-7
  8. Hyun, C.G., S.S. Kim, J.K. Sohng, J.J. Hahn, J.W. Kim, and J.W. Suh. 2000. An efficient approach for cloning the dNDP-glucose synthase gene from actinomycetes and its application in Streptomyces spectabilis, a spectinomycin producer. FEMS Microbiol. Lett. 183, 183-189 https://doi.org/10.1111/j.1574-6968.2000.tb08955.x
  9. Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Omura. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21, 526-531 https://doi.org/10.1038/nbt820
  10. Jensen, P.R, T. Mince, and F. William. 2003. The true potential of the marine microorganism. Drug Discovery Today 17-19
  11. Kim, B.S., J.Y. Lee, and B.K. Hwang. 1998. Diversity of actinomycetes antagonistic to plant pathogenic fungi in cave and seamud soils of Korea. J. Microbiol. 36, 86-92
  12. Mahmud, T. 2003. The C7N aminocyclitol family of natural products. Nat. Prod. Rep. 20, 137-166 https://doi.org/10.1039/b205561a
  13. Mahmud, T., S. Lee, and H.G. Floss. 2001. The biosynthesis of acarbose and validamycin. Chem. Rec. 1, 300-310 https://doi.org/10.1002/tcr.1015
  14. Naganawa, H., H. Hashizume, Y. Kubota, R. Sawa, Y. Takahashi, K. Arakawa, S.G. Bowers, and T. Mahmud. 2002. Biosynthesis of the cyclitol moiety of pyralomicin 1a in Nonomuraea spiralis MI178-34F18. J. Antibiot. (Tokyo). 55, 578-584 https://doi.org/10.7164/antibiotics.55.578
  15. Namiki, S., K. Kangouri, T. Nagate, H. Hara, K. Sugita, and S. Omura. 1982. Studies on the alpha-glucoside hydrolase inhibitor, adiposin. I. isolation and physicochemical properties. J. Antibiot. (Tokyo). 35, 1234-1236 https://doi.org/10.7164/antibiotics.35.1234
  16. Regina H., S. Silke, T. Ralf, and A. Zeeck. 2000. Biosynthesis of gabosines A, B, and C, carba sugars from Streptomyces cellulosae. Eur. J. Org. Chem. 10, 1883-1887
  17. Stratmann, A., T. Mahmud, S. Lee, J. Distler, H.G. Floss, and W. Piepersberg. 1999. The AcbC protein from Actinoplanes species is a C7-cyclitol synthase related to 3-dehydroquinate synthases and is involved in the biosynthesis of the $\alpha$-glucosidase inhibitor acarbose. J. Biol. Chem. 274, 10889-10896 https://doi.org/10.1074/jbc.274.16.10889
  18. Vertesy, L., H.W. Fehlhaber, and A. Schulz. 1984. The trehalase inhibitor salbostatin, a novel metabolite from Streptomyces albus, ATCC21838. Angew. Chem. Int. Ed. 33, 1844-1846
  19. Weber, T., K. Welzel, S. Pelzer, A. Vente, and W. Wohlleben. 2003. Exploiting the genetic potential of polyketide producing streptomycetes. J. Biotechnol. 106, 221-232 https://doi.org/10.1016/j.jbiotec.2003.08.004
  20. Yokose, K., K. Ogawa, T. Sano, K. Watanabe, H.B. Maruyama, and Y. Suhara. 1983. New alpha-amylase inhibitor, trestatins. I. isolation, characterization and biological activities of trestatins A, B and C. J. Antibiot. (Tokyo). 36, 1157-1165 https://doi.org/10.7164/antibiotics.36.1157
  21. Yoo, J.C., J.M. Han, S.K. Nam, O.H. Ko, C.H. Choi, K.H. Kee, J.K. Sohng, J.S. Jo, and C.N. Seong. 2002. Characterization and cytotoxic activities of nonadecanoic acid produced by Streptomyces scabiei subsp. chosunensis M0137 (KCTC 9927). J. Microbiol. 40, 331-334
  22. Zazopoulos, E., K. Huang, A. Staffa, W. Liu, B.O. Bachmann, K. Nonaka, J. Ahlert, J.S. Thorson, B. Shen, and C.M. Farnet. 2003. A Genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat. Biotech. 21, 187-190 https://doi.org/10.1038/nbt784