Alternative Production of Avermectin Components in Streptomyces avermitilis by Gene Replacement

  • Yong Joon-Hyoung (Department of Biofood, Hallym College) ;
  • Byeon Woo-Hyeon (Division of Biological Sciences, College of Natural Sciences, Kangwon National University)
  • 발행 : 2005.06.01

초록

The avermectins are composed of eight compounds, which exhibit structural differences at three positions. A family of four closely-related major components, A1a, A2a, B1a and B2a, has been identified. Of these components, B1a exhibits the most potent antihelminthic activity. The coexistence of the '1' components and '2' components has been accounted for by the defective dehydratase of aveAI module 2, which appears to be responsible for C22-23 dehydration. Therefore, we have attempted to replace the dehydratase of aveAI module 2 with the functional dehydratase from the erythromycin eryAII module 4, via homologous recombination. Erythromycin polyketide synthetase should contain the sole dehydratase domain, thus generating a saturated chain at the C6-7 of erythromycin. We constructed replacement plasmids with PCR products, by using primers which had been derived from the sequences of avermectin aveAI and the erythromycin eryAII biosynthetic gene cluster. If the original dehydratase of Streptomyces avermitilis were exchanged with the corresponding erythromycin gene located on the replacement plasmid, it would be expected to result in the formation of precursors which contain alkene at C22-23, formed by the dehydratase of erythromycin module 4, and further processed by avermectin polyketide synthase. Consequently, the resulting recombinant strain JW3105, which harbors the dehydratase gene derived from erythromycin, was shown to produce only C22,23-unsaturated avermectin compounds. Our research indicates that the desired compound may be produced via polyketide gene replacement.

키워드

참고문헌

  1. Anzai, H., Y. Kumada, O. Hara, T. Murakaml, R. Itoh, E. Takano, S. Imai, A. Satoh, and K. Nagaoka. 1988. Replacement of Streptomyces hygroscopicus genomic segments with in vitro altered DNA sequences. J. Antibiotics. 12, 226-233
  2. Arena, J.P., K.K. Liu, P.S. Paress, and D.F. Cully. 1991. Avermectin- sensitive chloride currents induced by Caenorhabditis elegans RNA in Xenopus oocytes. Mol. Pharmacol. 40, 368-74
  3. Bevitt, D.J., J. Cortes, S.F. Haydock, and P.F. Leadlay. 1992. 6- Deoxyerythronolide-B synthase 2 from Saccharopolyspora erythraea. Cloning of the structural gene, sequence analysis and inferred domain structure of the multifunctional enzyme. Eur. J. Biochem. 204, 39-49 https://doi.org/10.1111/j.1432-1033.1992.tb16603.x
  4. Bierman, M., R. Logan, K. O'Brien, E.T. Seno, R.N. Rao, and B.E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43-49 https://doi.org/10.1016/0378-1119(92)90627-2
  5. Burg, R.W., B.M. Miller, E.E. Baker, J. Birnbaum, S.A. Currie, R.L. Hartman, Y.L. Kong, Monaghan, R.L.G. Olson, I. Putter, J.B. Tunac, H. Wallick, E.O. Stapley, R. Oiwa, and S. Omura. 1979. Avermectins, New family of potent anthelmintic agents: Producing organism and fermentation. Antimicrob. Agents. Chemother. 15, 361-367 https://doi.org/10.1128/AAC.15.3.361
  6. Buttner, M.J., K.F. Chater, and M.J. Bibb. 1990. Cloning, disruption, and transcriptional analysis of three RNA polymerase sigma factor genes of Streptomyces coelicolor A3(2). J. Bacteriol. 172, 3367-3378 https://doi.org/10.1128/jb.172.6.3367-3378.1990
  7. Cane, D.E., T.-C. Liangm, L.K. Kaplan, M.K. Nallin, M.D. Schulman, O.D. Hensens, A.W. Douglas, and G. Albers-Schonberg. 1983. Biosynthetic origin of the carbon skeleton and oxygen atoms of the avermectins. J. Am. Chem. Soc. 105, 4110-4112 https://doi.org/10.1021/ja00350a070
  8. Campbell, W.C. 1982. Efficacy of the avermectins against filarial parasites. Vet. Res. Commun. 5, 251-62 https://doi.org/10.1007/BF02214991
  9. Chakraburtty, R., J. White, E. Takano, and M. J. Bibb. 1996. Cloning, characterization and disruption of a(p)ppGpp synthase gene(relA) of Streptomyces coelicolor A3(2). Mol. Microbiol. 19, 357-368 https://doi.org/10.1046/j.1365-2958.1996.390919.x
  10. Cortes, J., S.F. Haydock, G.A. Roberts, D.J. Bevitt, and P.F. Leadlay. 1990. Alternative modular polyketide synthase expression controls macrolactone structure. Nature 346, 176-178
  11. Donadio, S., M.J. Staver, J.B. McAlpine, S.J. Swanson, and L. Katz. 1991. Modular organization of genes required for complex polyketide biosynthesis. Science 252, 675-679 https://doi.org/10.1126/science.2024119
  12. Donadio, S., J.B. McAlpine, P.J. Sheldon, M. Jackson, and L. Katz. 1993. An Erythromycin Analog Produced by Reprogramming of Polyketide Synthesis. Proc. Natl. Acad. Sci. USA 90, 7119- 7123
  13. Egerton, J.R., D.A. Ostlind, L.S. Blair, C.H. Eary, D. Suhayda, S. Cifelli, R.F. Riek, and W.C. Campbell. 1979. Avermectins, new family of potent anthelmintic agents: efficacy of the B1a component. Antimicrob. Agents Chemother. 15, 372-8 https://doi.org/10.1128/AAC.15.3.372
  14. Flett, F., V. Mersinias V, and C.O. Smith. 1997. High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol. Lett. 155, 223-229 https://doi.org/10.1111/j.1574-6968.1997.tb13882.x
  15. Hopwood, D.A., M.J. Bibb, K.F. Chater, T. Kieser, C.J. Burton, H.M. Kieser, D.J. Lydiate, C.P. Smith, J.M. Ward, and H. Schremp. 1985. Genetic Manipulation of Streptomyces. A Laboratory Manual. The John Innes Foundation, Norwich, UK
  16. Hopwood, D.A. 1997. Genetic constribution to understanding polyketides synthases. Chem. Rev. 97, 2465-2497 https://doi.org/10.1021/cr960034i
  17. Hotson, I.K. 1982. The avermectins: A new family of antiparasitic agents. J. S. Afr. Vet. Assoc. 53, 87-90
  18. Ikeda, H. and S. Omura. 1997. Avermectin Biosynthesis. Chem. Rev. 97, 2591-2609 https://doi.org/10.1021/cr960023p
  19. Ikeda, H., T. Nonomiya, M. Usami, T. Ohta, and S. Omura. 1999. Organization of the biosynthetic gene cluste for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc. Natl. Acad. Sci. USA 96, 9509-9514
  20. Kartz, L. 1997. Manipulation of modular polyketide synthases. Chem. Rev. 97, 2557-2575 https://doi.org/10.1021/cr960025+
  21. Lomovskaya, N., L. Fonstein, X. Ruan, D. Stassi, L. Katz, and C. R. Hutchinson. 1997. Gene disruption and replacement in the rapamycin-producing Streptomyces hygroscopicus strain ATCC 29253. Microbiol. 143, 875-883 https://doi.org/10.1099/00221287-143-3-875
  22. MacNeil, D.J. 1988. Characterization of a Unique Methyl-Specific Restriction System in Streptomyces avermitilis. J. Bacteriol. 170, 5607-5612 https://doi.org/10.1128/jb.170.12.5607-5612.1988
  23. MacNeil, D.J., J.L. Occi, K.M. Gewain, T. MacNeil, P.H. Gibbons, C.L. Ruby, and S.J. Danis. 1992. Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene 115, 119-125 https://doi.org/10.1016/0378-1119(92)90549-5
  24. MacNeil, D.J., K.M. Gewain, C.L. Ruby, G. Dezeny, P.H. Gibbons, and T. MacNeil. 1992. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111, 61-68 https://doi.org/10.1016/0378-1119(92)90603-M
  25. Needleman, P., J. Turk, B.A. Jakschik, A.R. Morrison, and J.B. Lefkowith. 1986. Arachidonic acid metabolism. Annu. Rev. Biochem. 55, 69-102 https://doi.org/10.1146/annurev.bi.55.070186.000441
  26. Omura, S., H. Ikeda, and H. Tanaka. 1991. Selective production of specific components of Avermectins in Streptomyces avermitilis. J. Antibiotics. 44, 560-563 https://doi.org/10.7164/antibiotics.44.560
  27. Sambrook, J., E.F. Fritsch, and T. Maniats. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold spring Harbor Laboratory Press, Cold spring Harbor, New York
  28. Xue, Y., L. Zhao, H.W. Liu, and D.H. Sherman. 1998. A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: Architecture of metabolic diversity. Proc. Natl. Acad. Sci. USA 95, 12111-12116