Transformation using Conjugal Transfer and attB Site Properties of Streptomyces natalensis ATCC27448

접합전달을 이용한 Streptomyces natalensis ATCC27448의 형질전환 최적화 및 attB-site의 특성연구

  • Lee Kang-Mu (Division of Food Science and Biotechnology, Kyungnam University) ;
  • Choi Sun-Uk (Division of Food Science and Biotechnology, Kyungnam University) ;
  • Park Hae-Ryong (Division of Food Science and Biotechnology, Kyungnam University) ;
  • Hwang Yong-Il (Division of Food Science and Biotechnology, Kyungnam University)
  • 이강무 (경남대학교 식품생명공학부) ;
  • 최선욱 (경남대학교 식품생명공학부) ;
  • 박해룡 (경남대학교 식품생명공학부) ;
  • 황용일 (경남대학교 식품생명공학부)
  • Published : 2005.06.01

Abstract

Streptomyces natalensis ATCC27448 produces natamycin, a commercially important macrolide antifungal antibiotic. For molecular genetic study of S. natalensis, we have developed a system for introducing DNA into S. natalensis via conjugal transfer from Escherichia coli. An effective transformation procedure for S. natalensis was established based on transconjugation from E, coli ET12567/pUZ8002 using a ${\Phi}C31$-derived integration vector, pSET152, containing oriT and attP fragments. The high frequency was obtained on MS medium containing 10 mM $MgCl_2$ using $6.25\times10^8$ of E.coli donor cells without heat treatment of spores. In addition, southern blot analysis of exconjugants and the sequence of plasmids containing DNA flanking the insertion sites from the chromosome revealed that S. natalensis contains a single ${\Phi}C31$ attB site and at least a secondary or pseudo attB site. Similar to the case of various Streptomyces species, a single ${\Phi}C31$ attB site of S. natalensis is present within an ORF encoding a pirin-homolog, but a pseudo-attB site is present within a distinct site (GenBank accession no. $YP\_117731$) and also its sequence deviates from the consensus sequences of attB sequence.

상업적으로 중요한 macrolide계 항진균 학생물질인 natamycin을 생산하는 Streptomyces natalensis ATCC27448의 환자 유전학적인 연구를 위해 대장균으로부터 S. natalensis로 plasmid DNA를 직접 도입하는 형질전환법을 확립하였다. 이러한 S. natalensis의 형질전환은 oriT와 attP 단편을 가지고 있는, ${\Phi}C31$ 유래의 integration 벡터인 pSET152를 이용하여 Escherichia coli ET12567/pUZ28002을 DNA 공여체(donor)로 이용한 접합전달법(conjugal transfer)을 사용하여 확립하였다. 접합전달의 가장 높은 효율은 10 mM의 $MgCl_2$를 포함한 MS 배지에서, $6.25\times10^8$의 E. coli 공여체와 열처리를 하지 않은 S. natalensis의 포자를 사용하여 얻어졌다. 또 얻어진 접합전달체 (exconjugant)에 대하여 southern blot hybridization과 벡터가 삽입된 염색체부분의 염기서열분석을 통해 attB site와 pseudo-attB site를 확인하다. attB site의 경우에는 다른 방선균들처럼 S. natalensis 염색체의 pirin 상동체를 코드하는 ORF내에 존재하였으나 pseudo-attB site는 염색체내 다른 site (GenBank accession no. $YP\_117731$)에 존재하였고 그 염기서열은 attB 염기서열과 차이를 나타내었다.

Keywords

References

  1. Aparicio, J.F., R. Fouces, M.V.Mendes, N. Olivera and J.F. Martin. 2000.A complex multienzyme system encoded by five polyketide synthase genes is involved in the biosynthesis of the 26-membered polyene macrolide pimaricin in Streptomyces natalensis. Chem. Biol. 7, 895-905 https://doi.org/10.1016/S1074-5521(00)00038-7
  2. Bailey, C.R. and D.J. Winstanley. 1986. Inhibition of restriction in Streptomyces clavuligerus by heat treatment. J. Gen. Microbiol.132, 2945-2947
  3. Baltz, R.H. 1998. Genetic manipulation of antibiotic-producing Streptomyces. Trends Microbiol. 6, 76-82 https://doi.org/10.1016/S0966-842X(97)01161-X
  4. Bierman, M., R. Logan, K. O'Brien, E.T. Seno, R.N. Rao and B. E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43-49 https://doi.org/10.1016/0378-1119(92)90627-2
  5. Choi, S.U., C.K. Lee, Y.I. Hwang, H. Kinoshita and T. Nihira. 2004. Intergeneric conjugal transfer of plasmid DNA from Escherichia coli to Kitasatospora setae, a bafilomycin B1 producer. Arch. Microbiol. 181, 294-298 https://doi.org/10.1007/s00203-004-0654-8
  6. Combes, P., R. Til, S. Bee and M.C. Smith. 2002. The Steptomyces genome contains multiple pseudo-attB sites for the $\Phi$C31-Encoded site-specific recombination system. J. Bacteriol. 184, 5746-5752 https://doi.org/10.1128/JB.184.20.5746-5752.2002
  7. Engel, P. 1987. Plasmid transformation of Streptomyces tendaeafter heat attenuation of restriction. Appl. Environ. Microbiol. 53, 1-3
  8. Flett, F., V. Mersinias and C.P. Smith. 1997. High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia colito methyl DNA-restricting streptomycetes. FEMS Microbiol. Lett. 155, 223-229 https://doi.org/10.1111/j.1574-6968.1997.tb13882.x
  9. Kieser, T., M.J. Bibb, M.J. Buttner, K.F. Chater and D.A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, U.K
  10. Kitani, S., M.J. Bibb, T. Nihira and Y. Yamada. 2000. Conjugal transfer of plasmid DNA from Escherichia coli to Streptomyces lavendulae FRI-5. J. Microbiol. Biotechnol. 10, 535-538
  11.  MacNeil, D.J. 1988. Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J. Bacteriol. 170, 5607-5612 https://doi.org/10.1128/jb.170.12.5607-5612.1988
  12. Matsushima, P. and R.H. Baltz. 1996. A gene cloning system for 'Streptomyces toyocaensis'. Microbiology 142, 261-267 https://doi.org/10.1099/13500872-142-2-261
  13.  Matsushima, P., M.C. Broughton, J.R. Turner and R.H. Baltz. 1994. Conjugal transfer of cosmid DNA from Escherichia coli to Saccharopolyspora spinosa: effects of chromosomal insertions on macrolide A83543 production. Gene 146, 39-45 https://doi.org/10.1016/0378-1119(94)90831-1
  14.  Mazodier, P., R. Petter and C. Thompson. 1989. Intergeneric conjugation between Escherichia coli and Streptomyces species. J. Bacteriol. 171, 3583-3585 https://doi.org/10.1128/jb.171.6.3583-3585.1989
  15.  Motamedi, H., A. Shafiee and S.J. Cai. 1995. Integrative vectors for heterologous gene expression in Streptomyces spp. Gene 160, 25-31 https://doi.org/10.1016/0378-1119(95)00191-8
  16. Paranthaman, S. and K. Dharmalingam. 2003. Intergeneric conjugation in Streptomyces peucetius and Streptomyces sp. strain C5: Chromosomal integration and expression of recombinant plasmids carrying the chiC gene. Appl. Environ. Microbiol. 69, 84-91 https://doi.org/10.1128/AEM.69.1.84-91.2003
  17. Rao, R.N., M.A. Richardson and S. Kuhstoss. 1987. Cosmid shuttle vectors for cloning and analysis of Streptomyces DNA. Methods Enzymol. 153, 166-198 https://doi.org/10.1016/0076-6879(87)53053-1
  18. Sambrook, J. and D.W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, New York
  19. Smokvina, T., P. Mazodier, F. Boccard, C.J. Thompson and M. Guerineau. 1990. Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene 94, 53-59 https://doi.org/10.1016/0378-1119(90)90467-6
  20.  Stegmann, E., S. Pelzer, K. Wilken and W. Wohlleben. 2001. Development of three different gene cloning systems for genetic investigation of the new species Amycolatopsis japonicumMG417-CF17, the ethylenediaminedisuccinic acid producer. J. Biotechnol. 92, 195-204 https://doi.org/10.1016/S0168-1656(01)00360-1
  21.  Voeykova, T., L. Emelyanova, V. Tabakov and N. Mkrtumyan. 1998. Transfer of plasmid pTO1 from Escherichia coli to various representatives of the order Actinomycetales by intergeneric conjugation. FEMS Microbiol. Lett. 162, 47-52 https://doi.org/10.1111/j.1574-6968.1998.tb12977.x