Identification of the spk Gene Encoding Sphingosine Kinase in Sphingomonas chungbukensis DJ77 and Its Expression in Escherichia coli

Sphingomonas chungbukensis DJ77에서 Sphingosine Kinase를 암호화하는 spk 유전자의 동정과 대장균에서의 발현

  • Lee Su-Ri (School of Life Sciences, Chungbuk National University, Biotechnology Research Institute) ;
  • Um Hyun-Ju (School of Life Sciences, Chungbuk National University, Biotechnology Research Institute) ;
  • Kim Young-Chang (Chungbuk National University)
  • 이수리 (충북대학교 자연과학대학 생명과학부) ;
  • 엄현주 (충북대학교 자연과학대학 생명과학부) ;
  • 김영창 (충북대 바이오연구소)
  • Published : 2005.06.01

Abstract

The sphingosine kinase gene, which is 969-nucleotide long, was identified during the whole genome sequencing of Sphingomonas chungbukensis DJ77. The amino acid sequence showed the identity of $55\%$ with that of Zymomonas mobilis subsp. mobilis ZM4. C2, C3, and C5 domains of eukaryotic sphingosine kinase were found in sphingosine kinase from Sphingomonas chungbukensis DI77. One of these three conserved sites, GGDG, was predicted as a ATP-binding site, and the functions of the others were unknown currently. The phylogenetic tree constructed by ClustalX indicated that the sphingosine kinase of S. chungbukensis DJ77 was near the phylogenetic group COG1597, and did not belong to the group of diacylglycerol kinase of the same strain. The recombinant sphingosine kinase was expressed in Escherichia coli, but it was made in form of inclusion body.

Sphingomonas chungbukensis DJ77의 유전체 서열분식 과정에서 969개의 nucleotide로 구성된 sphingosine kinase 유전자를 동정하였다. 이 sphingosine kinase 단백질의 아미노산 서열은 Zymomonas mobilis subsp. mobilis ZM4의 sphingosine kinase 아미노산 서열과 $55\%$의 상동성을 보였다. 또한 다중서열정렬을 통해 각각 진핵세포의 sphingosine kinase의 C2, C3, C5 domain에 속하는 3개의 conserved sequence를 발견하였다. 그 중 하나는 sphingosine kinase에서 ATP-binding site일 것으로 예상되어지는nucleotide-binding motif(GGDG)였고 나머지 둘은 아직 기능이 알려지지 않은 conserved sequences 였다. 이러한 다중서열정렬을 바탕으로 계통수를 그려본 결과, S. chungbukensis DJ77의 sphingosine kinase (SPK)는 COG1597 그룹과 유사했으며, COG1597 내에서 동일종의 diacylglycerol kinase와는 서로 다른 그룹에 속하는 것으로 나타났다. 재조합 SPK는 이종(異種)세포인 Escherichia coli내에서 성공적으로 과발현 되었으나, 세포 내에서 불용성 복합체(inclusion body)를 형성하였다.

Keywords

References

  1. Cuvillier, O. 2002. Sphingosine in apoptosis signaling. Biochim. Biophys. Acta. 1585, 153-162 https://doi.org/10.1016/S1388-1981(02)00336-0
  2. Hannun, Y.A. and R.M. Bell. 1987. Lysosphingolipids inhibit protein kinase C: implications for the sphingolipidoses. Science 235, 670-674 https://doi.org/10.1126/science.3101176
  3. Herve, L.S., S. Milstien, and S. Spiegel. 2004. Generation and metabolism of bioactive sphingosine-1-phosphate. J. Cell Biochem. 92, 882-899 https://doi.org/10.1002/jcb.20097
  4.  Herve, L.S., C. Peterson, H. Liu, S. Milstien, and S. Spiegel. 2002. Sphingosine-1-phosphate and lipid phosphohydrolases. Biochim. Biophys. Acta. 1582, 8-17 https://doi.org/10.1016/S1388-1981(02)00132-4
  5.  Hiroko, I., H. Hayashi, and H. Kagamiyama. 2001. A water- soluble homodimeric serine palmitoyltransferase from Sphingomonas paucimobilis EY2395T strain. J. Biol. Chem. 276, 18249-18256 https://doi.org/10.1074/jbc.M101550200
  6.  Hla, T., M.J. Lee, N. Ancellin, J.H. Paik, and M.J. Kluk. 2001. Lysophospholipids--receptor revelations. Science 294, 1875-1878 https://doi.org/10.1126/science.1065323
  7.  Ingar, O. and E. Jantzen. 2001. Sphingolipids in bacteria and fungi. Anaerobe 7, 103-112 https://doi.org/10.1006/anae.2001.0376
  8.  Kawahara, K., B. Lindner, Y. Isshiki, K. Jakob, Y.A. Knirel, and U. Zahringer. 2001. Structural analysis of a new glycosphingolipid from the lipopolysaccharide-lacking bacterium Sphingomonas adhaesiva. Carbohydr. Res. 333, 87-93 https://doi.org/10.1016/S0008-6215(01)00111-2
  9. Kawahara, K., H. Kuraiahi, and U. Zahringer. 1999. Chemical structure and function of glycosphingolipids of Sphingomonas spp. and their distribution among members of the $\alpha$-4 subclass of Proteobacteria. J. Ind. Microbiol. Biotechnol. 23, 408-413 https://doi.org/10.1038/sj.jim.2900708
  10.  Kawahara, K., H. Moll, Y.A. Knirel, U. Seydel, and U. Zahringer. 2000. Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulata. Eur. J. Biochem. 267, 1837-1846 https://doi.org/10.1046/j.1432-1327.2000.01189.x
  11. Kawahara, K., M. Kubota, N. Sato, K. Tsuge, and Y. Seto. 2002. Occurence of an $\alpha$-galacturonosyl-ceramide in the dioxin-degrading bacterium Sphingomonas wittichi. FEMS Microbiol. Lett. 214, 289-294
  12.  Kawahara, K., U. Seydel, M. Matsuura, H. Danbara, E. Th. Rietschel, and U. Zahringer. 1991. Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Lett. 292, 107-110 https://doi.org/10.1016/0014-5793(91)80845-T
  13. Kawasaki, S., R. Moriguchi, K. Sekiya, T. Nakai, E. Ono, K. Kume, and K. Kawahara. 1994. The cell envelope structure of the lipopolysaccharide- lacking gram-negative bacterium Sphingomonas paucimobilis. J. Bacteriol. 176, 284-290 https://doi.org/10.1128/jb.176.2.284-290.1994
  14.  Kim, C.K., J.W. Kim, Y.C. Kim, and T.L. Mheen. 1986. Isolation of aromatic hydrocarbon-degrading bacteria and genetic characterization of their plasmid genes. Kor. J. Microbiol. 24, 67-72
  15. Kim, S.J., H.J. Shin, Y.S. Kim, S.J. Kim, and Y. C. Kim. 1997. Nucleotide sequence of the Pseudomonas sp. DJ77 phnG gene encoding 2-hydrozymuconic semialdehyde degydrogenase. Biochem. Biophys. Res. Commun. 240, 41-45 https://doi.org/10.1006/bbrc.1997.7595
  16. Kim, S.J., J.S. Chun, K.S. Bae, and Y.C. Kim. 2000. Polyphasic assignment of an aromatic degrading Pseudomonas sp., strain DJ77, in the genus Sphingomonas as Sphingomonas chungbukensis sp. Nov. Int. J. Syst. Evol. Microbiol. 50, 1641-1647 https://doi.org/10.1099/00207713-50-4-1641
  17.  Kohama, T., A. Olivera, L. Edsall, M.M. Nagiec, R. Dickson, and S. Spiegel. 1998. Molecular cloning and functional characterization of murine sphingosine kinase. J. Biol. Chem. 273, 23722-23728 https://doi.org/10.1074/jbc.273.37.23722
  18. Lynch, K.R. and D.S. Im. 1999. Life on the edg. Trends Pharmacol. Sci. 20, 473-475 https://doi.org/10.1016/S0165-6147(99)01401-7
  19. Maceyka, M., S. G. Payne, S. Milstien, and S. Spiegel. 2002. Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim. Biophys. Acta. 1585, 193-201 https://doi.org/10.1016/S1388-1981(02)00341-4
  20. Naka, T., N. Fujiwara, E. Yabuuchi, M. Doe, K. Kobayashi, Y. Kato, and I. Yano. 2000. A novel sphingoglycolipid containing galacturonic acid and 2-hydroxy fatty acid in cellular lipids of Sphingomonas yanoikuyae. J. Bacteriol. 182, 2660-2663 https://doi.org/10.1128/JB.182.9.2660-2663.2000
  21. Pettus, B.J., C.E. Chalfant, and Y.A. Hannun. 2002. Ceramide in apoptosis: an overview and current perspectives. Biochim. Biophys. Acta. 1585, 114-125 https://doi.org/10.1016/S1388-1981(02)00331-1
  22. Stuart M.P., P.A.B. Moretti, J.R. Zebol, R. Zareie, C.K. Derian, A. L. Darrow, J. Qi, R.J.D'Andrea, C.J. Bagley, M.A. Vadas, and B. W. Wattenberg. 2002. The nucleotide-binding site of human sphingosine kinase 1. J. Biol. Chem. 277, 49545-49553 https://doi.org/10.1074/jbc.M206687200
  23. Spiegel, S, D. Foster, and R. Kolesnick. 1996. Signal transduction through lipid second messengers. Curr. Opin. Cell. Biol. 8, 159-167 https://doi.org/10.1016/S0955-0674(96)80061-5
  24. Spiegel, S. and S. Milstien. 2003. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell. Biol. 4, 397-407 https://doi.org/10.1038/nrm1103
  25. Yabuuchi, E., E. Tanimura, A. Ohyama, I. Yano, and A. Yamamoto. 1979. Flavobacterium devorans ATCC 10829; a strain of Pseudomonas paucimobilis. J. Gen. Appl. Microbiol. 25, 95-107 https://doi.org/10.2323/jgam.25.95