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Gait control capacity for most trans-femoral prostheses is significantly different from that of a normal person, and training
is required for a long period of time in order for a patient to walk properly. People become easily tired when wearing a
prosthesis or orthosis for a long period typically because the gait angle cannot be smoothly adjusted during wearing.
Therefore, to improve the gait control problems of a trans-femoral prosthesis, the proper gait angle is estimated through
surface EMG(electromyogram) signals on a normal leg, then the gait posture which the trans-femoral prosthesis should
take is calculated in the neural network, which learns the gait kinetics on the basis of the normal leg's gait angle. Based
on this predicted angle, a postural control method is proposed and tested adaptively following the patient's gait habit based
- on the predicted angle. In this study, the gait angle prediction showed accuracy of over 97%, and the posture control capacity

of over 90%.

1. Introduction

The number of all-limb paralytics, or those with hemiplegia, paraly-
sis in the lower half of the body, upper or lower limb amputees has in-
creased because of industrial or traffic accidents. In Japan, Kawato suc-
ceeded in robotic control in 1994, leading to the development of artificial
arm and leg for sufferers from disastrous accidents (Koike and
Kawato'). In 2000, Barreto (Florida University, USA) presented a study
for artificial arm control using the EMG signal(Barreto2’3). These stud-
ies made it possible to commercialize artificial arms or legs.
Nevertheless, there were considerable problems that remained
unsolved. Commercialized orthoses or prostheses have gait angles quite
different from those of a normal person. They require a long period of
training so that the wearer can walk properly. Besides, patients become
more easily fatigued when they walk with a prosthesis or orthosis for
along period. One of the main factors is that patients cannot control the
gait posture angle as smoothly as a normal person can. During one gait
period (from one position to the next same position), the lower limb
draws an arc, and the gait refers to a repetition of this period. This gait
phase is influenced by inherent reflection capacity, the learned activity,
the kinematics aspect of both lower limbs, personal features, central and
peripheral nervous system, and heart and lung capacity(Esquenanzi®,
Ozkaya®). The gait angle of each joint depends on a patient's gait habit,
physical size and so on. Therefore, in the case of a patient whose lower
limb is amputated, it is hard to obtain his/her normal gait pattern.
Therefore, to solve this problem, a new method was investigated for con-
trolling the optimal gait posture according to patient's gait habit using
a neural network, which has a capacity for learning. For implementation,
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the gait angle was predicted by using a surface EMG signal(Wang®,
Enderle’, Metin Akay8 Yon a normal lower limb, and then, based on this
angle, the gait posture was predicted for the prosthesis from the neural
network that learned the gait kinematics. The posture was then adap-
tively controlled through a multi-neural network. In this study, the gait
angle prediction capacity and the control capacity system were
analyzed.

2. Trans-femoral prosthesis modeling

A trans-femoral prosthesis was modeled for a patient whose limb
below the femoral joint was amputated. Generally, prosthesis motion.
consists of the interaction between the three joints (coxa, knee joint, and
ankle joint) and the feet; therefore, it should be kinetically modeled on
this interaction(Kalanovic’). However, for kinetics modeling of the
trans-femoral prosthesis, the ankle joint was fixed, and the coxa was as-
sumed to be controlled by the amputee. Fig. 1 shows the modeling struc-
ture of the trans-femoral prosthesis. If the torque to control the coxa
is controlled by the amputee while controlling the trans-femoral pros-
thesis, the control target becomes the knee joint. Therefore, the structure
of the trans-femoral prosthesis and the kinematical feature of the gait
are quite similar to that of a pendulum. In this research, the lower limb
prosthesis was modeled after a pendulum to interpret the dynamic
two-dimension coordinates. The following procedure was taken to ob-
tain the torque (7}) to control the knee joint. For modeling the trans-fem-
oral prosthesis in this study, the symbols of the mechanical parameters
are shown in Table 1.
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In Fig. 1, the angle was set as negative if the joint flexes; positive
if the joint extends on the basis of the vertical direction of the rectangular
coordinate (6, = 6,= 0). The coxa was set up as the origin (z=10,
y=0).

Fig. 1 The trans-femoral prosthesis model

Table 1 Defined the symbols for modeling trans-femoral prosthesis

6, 0, | Angles of hip and knee
L, L, | Lengths of thigh and shank
Lyce Distance from knee joint to the center of mass of the shank
M,, Mass of the thigh
| M s Sum of the masses of the foot and the shank
I, I Inertial moments for the thigh and shank
Ty, Y | Joint location of the knee
g Gravitational constant

The locations of the knee and the center of gravity of the shank can
be expressed as follows:

x, = L,sind, 1)
yy =— L;cosfy )
Zyoe =— Lisin8,+ L cgsind, 3)
Ysco =— L1c0s6, — L pecoshy, €]

If Egs. (1) and (2) are differentiated with respect to time (%), the ve-
locity can be expressed as:

"E.SCG =—9th0059h+ ékLsCGCOSHk (5)

Yoo = 04Lsind,+ 0 Logasind (6)

In Egs. (5) and (6), the velocity vector (¥, ) of the center of gravity

of the shank can be expressed as:

[ |
v, = 00 ®)
[Ysce |
’UZ’US is expressed in Eq. (9).
’vsTvs _ i[fﬂscc W Ti[f?scc ].
[Ysco ] [Yscqo |
=00 + Vico
=L6,* + Liceb,” +2L,L,cq ©

§,0,cos (6, —6,)

Based on Egs. (5) to (9), kinetic energy (T') and potential energy
(U) of the shank are obtained as:

mov’v+ L L6}

T 2

I

-+ + o= o=

M {L}6,” + L 6,7
(10)
2L,L CGghgkCOS 0,— 0,)}

1 2
=10
2 sV k

U=— M,g(L,cosb, + L,ozcos6,) an

From Egs. (10) and (11), the knee joint torque is obtained as Eq.(13)
by the Lagrange equation(Mckerrow10).

L=T-U
:é_Ms{Lfe'hQ

+ 2L8,L,ccb,cos(6, — 6,) (12)

+ Lie0, ) + %Isgkz + M, gL,cost,

+ M, gL, ccos0,

oL

_d (9Ly_ 0L

T, = — (=

00,
LSCGQ'hcos 6, —0,)
) .. (13)
+ (MsLsCG + Is )ek
- MsLthCGéhQ sin (6, — 6,)
+ M gL ,.sind,

- ML

13

3. Proposed trans-femoral prosthesis control system

Human gait depends on gait speed, posture, road surface, and pa-
tient's gait habit. Therefore, to obtain normal gait features for a femur
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Fig. 2 The proposed control structure to control the gait posture of the trans-femoral prosthesis

amputee, the control structure and method are proposed as shown in Fig.
2 . In the proposed control method, the gait dynamics was trained in the
neural network. The gait dynamics followed by the gait habit of a normal
person whose gait feature is similar to the femur amputee. The knee joint
angle of the prosthesis was then predicted while walking on the basis
of the EMG signal from the femur muscle of the amputee. The predicted
angle was set up as the control input to control the posture of the knee
joint of the prosthesis. In this technique, the gait feature of the injured
lower limb of the amputee was assumed to be similar to that of a normal
person's; thus the amputee's EMG was used. To measure and control
the gait posture angles of the amputee, a general angle sensor (encoder,
tilt sensor, etc.) should be attached to the amputee although this gen-
erally causes inconvenience while walking. Therefore, EMG was used
to sense the joint angles while the amputee's walking was not hindered.
This method using the EMG signal is used features of EMG; when the
knee joint flexes or extended, the EMG energy of femur muscles in-
creases or decreases (Barret02’3, WangG, Enderle7). In this study, the con-
trol structure and technique are suggested to realize the same gait posture
of the patient whose one-side lower limb is lost as normal person's (Fig.
2). In the proposed method, the neural network first learned normal per-
son's gait manner, which was similar to the patient. Second, the hip joint
angle and the knee joint posture of the artificial leg for walking were
estimated based on the EMG signals from the femoral muscle. Third,
the estimated angles were inputted into the controller to control the an-
gles of the artificial leg joints from the knee joint angle. In other words,
the EMG signal, which varied depending on the gait patterns, was ob-
tained from the femoral muscle involved in the knee joint movements
to filter with a low-pass filter, and then the absolute value of the EMG
signal was inputted into the RBF neural network(Lee'', Zurada"?, Lee)
to estimate the knee joint angle. Then, using the estimated knee joint
angle as a reference signal of the controller, the hip joint angle and the
knee joint angle of the artificial leg were predicted. After that, the pre-
dicted angle was set up as the reference value of the adaptive posture
controller.

3.1 EMG-based knee and gait angle prediction for a normal gait
This study proposes a method of predicting the posture angle of pros-
thesis from the EMG signal coming from the normal side. The neural
network learns the gait feature of the normal lower limb of the amputee
whose one lower limb was amputated, so that a more effective posture
of the prosthesis joint can be predicted. Its structure and the signal proc-
essing method are as shown in Fig. 3. The proposed method to predict
the gait angles used two neural networks as shown in Figs. 4 and 5.
Fig. 4 shows the structure to predict the knee joint angle on the nor-
mal side of the subject from the EMG signal. The RBF neural network

was used, which was robust in processing biomedical signals that nor-
mally show much noise(Leel1). As shown in Fig. 3, the EMG signal
of the rectus-femoris and the knee joint angle were sampled and acquired
at 1 kHz frequency. In the experimentation, the acquired signals in-
cluded the noises in EMG signal and knee angles signal. These noises
are 60 Hz frequency generated from the power line, the random signal
and the vibration noise of sensors generated from patient's walking.
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Fig. 4 Knee angle estimator using the RBF neural network

In this study, the used two filters to reject the noises are the
MAF(moving average filter) and BPF(band pass filter). The vibration
noise of the sensor was filtered with the 500-order MVF that has the char-
acteristic of the cutoff frequency 1.2[Hz]. And the random noise in-
cluded in the measured EMG was pre-processed with band pass filter(41
order FIR filter) with a cut-off frequency of 20 - 300Hz (Enderle7) for
removal. And the absolute energy process was computed as in Eq. (14)
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Fig. 5 Structure of gait angles prediction based on stimulated knee

angle and multi-layer neural networks

to obtain the EMG signal when the knee joint bent and extended. The
low-pass filter of the FIR structure with the cut-off frequency of 200Hz
was used to filter the noise as in Eq. (15) to obtain the EMG signal
envelope.

Syps(n)=1S(n)| (14)
K—1

E pp(n) = 2 Saps(n— k)w, (15)
F=0

The extracted feature signal was inputted into the RBF neural net-
work as in Figs. 2 and 3. The structure of the neural network for learning

is shown in Fig. 4. The knee joint angle 6% on the normal side was set
as the desired value, and the neural network learned to minimize the pre-

diction error E(n) of the knee joint angle. After the neural network
completed learning, the knee joint angle was predicted for forward
operation. The following equation is the angle prediction.

6% (n) = NNy (ipsr)
_ & _ 2 (iRBF(Q)“‘mrq)Q
= gwr(mp[ 92:]1 -T-])
g=12,..,Q, r=1,2,.., R (16)

where, tpgr= [Erpr(n) , , , Erpr(n—q—1)] is the input vector
of RBF neural networks; 172, is the center value of the 7-th RBF function

for the g-th input; Prg is the distribution of the 7-th RBF function for
the g-th input. The learning of the RBF neural network was used to mini-

mize the prediction difference E{n) between the knee joint angle 95
on the normal side and the predicted knee joint angle 9];; .

E(n)= —;— (65— 6f)? : (17)

Optimal m._._, 9 r, and W, for the neural network learning are shown
in Eqgs. (18) to {30).

g, —— 2B (1)

8wr (18)
1
~ Q X _ )
_ OF
Am’q_ﬁnm-m
Q ; _ 2
=2 (eop[= 3, (%LF(Q)T’Z%)‘D (19)

g=1 Urq

(iRBF(Q)—mr ) (9}1;_52) < w,

9

OF
AO’ﬁ = 7]5'%;

Q . _ 2
=1,2 (627])['-2 ('LRBF(q)2 mm) ]) 20)

qg=1 Urq

. (iRBF(Q)3“ ) (gi‘éi)wr

q

where, 1,,, 75, and 17}, are leamning constants. As shwon in Fig.
5, the multilayer neural network was used to estimate the hip joint and
the knee joint angles of the artificial leg during walking, based on the
estimated knee joint angle of the normal leg. Thus, a new identification
method is proposed on the dynamics for patient's walking pattern. To
estimate the hip joint and knee joint angles of the artificial leg of the
patient whose one-side leg is lost, this proposed method obtains physi-
cally similar person's gait angle and uses the data for learning the gait
angle estimator. The EBPA(error back-propagation algorithm) of the
multi-neural network was used for the learning algorithm(Zuradal2,
Leel3). The input vector 4y of the gait angle prediction neural network
is the knee joint angle 0 £ predicted from the EMG, and the output 8%
allows for the prediction of the posture angle 8, for each joint of the
prosthesis during walking. The corresponding operation process is
shown in Eq. (22).

iy = |82 (n), B (n—1),6F (n—2),

_ @1)
8 (n—j—1)]
" K J
91}5 (n) = )‘2;:1 w}c/\lzlekiNN (4) (22)
= =

where, )\1 ; /\2 are the aftivation functions. To minimize the pre-
diction error E (1) between 0 (n ) and 05 (n ), Awy and Aw;, were
adjusted and learned through the érror back propagation algorithm as
follows:

1 -~
E(k) = 5 [6{ (n) — 6 (n))* (23)
Awkf—ngu]i_, >0 24)
3
aw, ==L, 5> 0 25)

i

Based on the weight information in the neural network leared
from the normal person's gait data, the gait posture angle for each joint
of the prosthesis was predicted using the knee joint angle 87 (2 ) which
was predicted simply in a forward direction of the neural network during
walking.

3.2 Design of adaptive controller to control the knee joint of the
prosthesis

In this study, the posture of the prosthesis was controlled through
the Ipredicted gaitangle 8 { of the knee joint and the controller as in Fig,
6. In this neural network controller, the linear controlier was arranged
in parallel, the neural network repeated the desired period, which was
learned and controlled on-line, so that the desired gait posture angle 6 R
could be obtained while the forward error was back-propagated tﬁroug]il
the neural network. The gait angle was learned through several learning
cycles, and the neural network learned and controlled the inverse dy-
namics of the prosthesis for convergence. In other word, the adaptive
controller was used to control the posture of the knee joint adaptively
according to the amputee's gait features.
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Fig. 6 Neural network controller for posture control of knee prosthesis
3.2.1 Design of the linear controller

The controller in this study consists of the LQR controller and the rank((B AB AR, .., AB"'|) =n @7
neural network controller trained order to adaptively control the posture T ¢

of the knee joint. The used physical parameters of the prosthesis model [ C |
for controlling the posture are in shown Table 2. Table 2 is obtained from . CA :
patient's prosthesis who limb below the femoral muscle was amputated. rank( ! i) = 7, (28)
. , Ll
Table 2 The physical parameters of the prosthesis used in the simulation | CA™ ]
Trans-femoral . N . .
Parameter Units . The prosthesis models in this study are effective for measuring all
Prosthesis states; thus, all states can give feedback. Accordingly, the LQR con-
L - [m] 0.42 troller(Eq.(30)) controls the posture of the trans-femoral prosthesis. The
Leco [m] 0.18 optimal gain matrix K(Eq.(31)) of the LQR controller to minimize the

cost function J is obtained by solution P of the steady-state Riccati

L, 0.51
A il equation(Ogatal6) as PA+ A"P—PBRB"P+ Q= 0.
M, [kg] 8.1
M; k; 4.5 o
- [gjz J= / (z’Qz+ u'Ru)dt (29)
I [kg -m’] 0.06 0
I [kg - m’] 0.11 w. b0 — kof
92 —  Ka-— 110k k12 'k (30)
The proposed control method is that the LQR controller operates Ui — k04 — ka0
in the early stage of the process, and the neural network controller, which (kn kgl [—0.28 —0.38
learns the amputee's gait features, operates when the learning the neural K= lkoy kool — 1 0.82  1.13 ] (3D
network is converged. To design the LQR controller, the necessary and
sufficient condition of that all roots of an system equation(Eq.(28), ob- . ]
tained from Table 2) should be controllable (Eq.27) and observable where @ and R are defined as Eq. (32) to obtain the gain matrix.
(Eq.(28)). 10 10
; =lo1 ®=lo 1] (32)
z= Axz+ Bu (26)
y= Cz

3.2.2 Design of the neural network adaptive controller

In Eq.(26), the state vector & is [6, 6,] 7, the input vector % is

o The learning of the FELC(forward error learning con-
[4; “]"and A, B, C, D are as follows: g ( g

troller(Sigerul5)) minimizes the error function £ shown in Eq. (33).
i1 0 The desired output from Eq. (33)is 9 £.

c=

0 1] [0 0 ]
] 0 1]

| _
A=|_05394 0 BP=1-1.33 3.91/" s -
E= Egl(af(n)—ek(n)f 33)

Accordingly, the trans-femoral model of this study are controllable
and observable because the values of the controllability(Eq. 27) and ob-
servation(Eq. 28) are 7,=2 and 7,=2. In this study, the used activation functions of this neural network
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Fig. 9 Result of the Estimated angles during gait

controller are the linear functions net = f(net) and the learning algo-
rithm used the EBPA(error back-propagation algorithm) to train the
plant Jacobian, 06;/Ou;. The overall control output Uy, is the sum of
the output u¢ of the linear controller and the output u"" of the neural
network controller as u, = 4"+ u" .

4. Experiment and results

4.1 Design of the analog interface to measure EMG and gait
angle

The analog sensor interface was designed to obtain the EMG signal
first so that the effectiveness of the proposed prosthesis control system
could be verified. Because the EMG signal amplitude required was 20
to 30mV and the frequency required was 20 to 300Hz when the sensor
interface circuit was designed, electrodes were attached to the skin
above the femur muscle and amplified 200 times. A band pass filter
0f 20 to 300Hz and 60Hz band reject filter were designed to remove noise
included in the amplified EMG signal. The TILT SA1(DAS14) tilt sen-
sor with the angle range of +60[deg.] was used to measure the lower limb
angle while walking. Fig. 7 shows the implemented system. The EMG
sensor was attached to the femur muscle while the tilt sensor was at-
tached to measure the joint angle at the center of the shin length. The
joint angle and the EMG signal were then measured from each lower
limb.

4.2 EMG measurement and digital signal process

The EMG signals and the gait data are obtained using Biopac's
MP100 at the sampling frequency of 1 kHz. The EMG signal and gait
angles are measured for three step walking sets, and the vibration noise
from each sensor caused by muscle vibration while walking was re-

Fig. 7 The implemented measurement system

moved with the moving average filter (order=500). The cut-off fre-
quency was set at 20 to 300Hz, and the band pass filter (order=59) with
the FIR filter structure having the characteristics of the hamming win-
dow function removed the noise from the EMG signal.

4.3 Gait angle prediction and experimental results using the
EMG

The neural network structure was specified with the parameters
in Table 3 to predict the knee joint angle of the amputee's normal lower
limb using the EMG while walking by the amputee based on the pro-
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posed technique shown in Figs. 3 and 4. The prediction result of the
neural network after learning is shown in Fig. 8. The knee joint angle
error of the normal lower limb was measured as an average 0.1809° for
8 sets in the gait period.

Table 3 Parameters of LPF(lowpass filter) and neural networks to predict

gait angles

Neural Networks
LPF
RBF MLNN
Input
?utoff 200[Hz] p 2 100
requency Neurons
Hidden
Orders 59 10 20
Neurons
Window |Hamming OI\llletll)llrlctms 1 5
Activation . .
Structure Function Gaussian Linear
FIR -
of filter Learning 01 0.1
Rate : -

4.4 Gait angle prediction and the posture control of the
Prosthesis

As shown in Figs. 3 and 5, the gait posture angle of each joint of
the prosthesis was predicted using the knee joint predicted simply in
the forward direction of the neural network while walking. It was based
on the weight information of the neural network learned from the normal
gait data. The parameters in Table 3 were specified to verify the pre-
diction effect of the gait angle which the prosthesis should take while
walking. The result is shown in Fig. 9. In the experimental result, the
prediction error for the knee joint posture angle, which the prosthesis
should take, turned out to be 0.23[deg.] for 8 sets in the gait period.
Therefore, the accuracy of the knee joint angle prediction of the prosthe-
sis based on the EMG signal was 97.6%. Thus, this accuracy is expected
to be available as each joint predictor for controlling the posture of the
knee joint of the prosthesis while walking. Using this predicted angle,
the reference signal was set up for the posture controller in this research.

4.5 Gait posture control experiment and results

The proposed posture controller shown in Figs. 2 and 6 was designed
and simulated in order to verify the performance of the control
technique. In the experimentation, the used structure of the neural net-
work for controlling the posture of the trans-femoral prosthesis included
14 input neurons, 20 hidden layers, and 1 output layer in the time delay
neural network formation. The activation function was linear. The in-
puts of the control neural network are the hip joint angle 8, (1) , accel-

eration 8, (n) and angular velocity 6, (n) of the normal lower limb,
each first delay component (8, (n—1) .6, (n—1),6,(n—1)), con-
trol error (€, (1) €, (n— 1)), the predicted kaee joint angle for the pros-
thesis(0; (nc) , 0, (n— 1)), the output of the state feedback controller
@ (n), u (n—1))and overall control output (; (1), %, (n—1)).
In controlling the prosthesis, first, the LQR controller was controlled,
then, the posture was controlled adaptively through learning con-
vergence in the neural network controller. Eq. (31) was used for the gain
of the LQR controller. Fig. 10 shows the result of controlling the posture
of the prosthesis knee joint when the neural network was twice taught
to learn. Table 4 shows the average error of the neural network controller
during the third gait period. In this result, the neural network controller
was able to properly control its learning process per amputee's gait state.

Table 4 Errors of posture control using the neural controller

Mean error

LQR NN

Simulation item

gait(cycles=3) 3.2706 1.3575

5. Conclusions

To restore gait capacity when wearing the prosthesis and to make
it similar to that of a normal person, the posture control technique of
the trans-femoral prosthesis was proposed using the learning capacity
of the artificial neural network, and its performance was gauged through
the experiments. The surface EMG signal of the normal lower limb was
used to extract the current gait angle, and then, the gait posture of the
prosthesis was predicted from the neural network which learned normal
gait kinematics based on the angle. The adaptive posture was then con-
trolled using the artificial neural network. The results revealed that the
average error of the knee joint angle prediction out of the EMG of the
normal lower limb was 0.1809[deg.], which is quite acceptable for ac-
tual applications. The prediction error of the posture angle, which the
prosthesis should take while walking, was 0.2255[deg.]. The accuracy
of the angle prediction was 97.6%, which showed that the posture angle
obtained while the amputee was walking could be used as the controller
input. For controlling the posture of the trans-femoral prosthesis from
the predicted knee joint posture angle, it showed an improvement of up
to 90% from the LQR controller. Therefore, it is estimated that the
trans-femoral prosthesis can be properly controlled following the am-
putee's gait habits, and we may expect the amputee would show signs
of less fatigue when walking with the prosthesis.
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