Development Trends of Ceramic Composite Armors for Combat Vehicles

전투차량용 세라믹 복합장갑의 개발추세

  • 안성훈 (서울대학교 기계항공공학부) ;
  • 정우균 (서울대학교 기계항공공학부 대학원) ;
  • 김희재 (육군사관학교 교수부 무기공학과)
  • Published : 2005.07.01

Abstract

Keywords

References

  1. Kim, H. J., 'Ballistic Protection Engineering,' Cheong Moon Gak Publishers, 2004
  2. Lee, H. J., 'Rifle and Ballistics,' Cheong Moon Gak Publishers, 1998
  3. Korea Military Academy, 'Weapon engineering,' Cheong Moon Gak Publishers, 1992
  4. Sadanandan, S. and Hetherington, J. G., 'Characterization of Ceramic/Steel Ceramic / Aluminum Armours Subjected Oblique Impact,' International Journal of Impact Engineering, Vol. 19, pp. 811-819,1997 https://doi.org/10.1016/S0734-743X(97)00019-5
  5. Benloulo, I. S. C. and Sanchezgalvez, V., 'A New Aanlytical Model to Simulate Impact onto Ceramic/Composite Armors,' International Journal of Impact Engineering, Vol. 21, pp. 461-471, 1998 https://doi.org/10.1016/S0734-743X(98)00006-2
  6. Mahfuz, H., Zhu, Y., Haque, A., Abutalib, A., Vaidya, U., Jeelani, S., Gama, B., Gillespie, J. and Fink, B., 'Investigation of high-velocity impact on integral armor using finite element method,' International Journal of Impact Engineering, Vol. 24, pp. 203-217, 2000 https://doi.org/10.1016/S0734-743X(99)00047-0
  7. Jovicic, J., 'Modeling of the ballistic behavior of gradient design composite armor,' Composites: Part A, Vol. 31, pp. 773-784, 2000 https://doi.org/10.1016/S1359-835X(00)00028-2
  8. Mines, R.A.W., 'A one-dimensional stress wave analysis of a lightweight composite armour,' Composite Structures, Vol. 64, pp. 55-62, 2004 https://doi.org/10.1016/S0263-8223(03)00213-7
  9. Chou, S. C., 'Ballistic impact damage of s2 glass reinforced plastic structural armors,' Composites Science and Technology, Vol. 58, pp. 1453-1461, 1998 https://doi.org/10.1016/S0266-3538(98)00029-3
  10. Gama, B. A., 'Aluminum foam integral armor: a new dimension in armor design,' Composite Structures, Vol. 52, pp. 381-395,2001 https://doi.org/10.1016/S0263-8223(01)00029-0
  11. Fawaz, Z., Zheng, W. and Behdinan, K., 'Numerical simulation of normal and oblique ballistic impact on ceramic composite armours,' Composite Structures, Vol. 63, pp. 387-395, 2004 https://doi.org/10.1016/S0263-8223(03)00187-9
  12. Anderson, C. E. and Walker, J. D., 'An analytical model for dwell and interface defeat,' International Journal of Impact Engineering, Vol. 31, pp. 1119-1132,2005 https://doi.org/10.1016/j.ijimpeng.2004.07.013
  13. Shin, H. S., Oh, S. Y., Kim, D. K., Kim, C. W. and Chang, S. N., 'Investigation on Fracture Behavior of Armor Ceramics Against HEAT Penetration,' International Journal of Impact Engineering, Vol. 23, pp. 631-638, 2003 https://doi.org/10.1016/j.ijimpeng.2003.10.010
  14. Rosenberg, Z. and Dekel, E., 'On the role of material properties in the. terminal ballistics of long rods,' International Journal of Impact Engineering, Vol. 30, pp. 835-851,2004 https://doi.org/10.1016/j.ijimpeng.2004.03.007
  15. Rosset, W. S., 'Patterned armor performance evaluation,' International Journal of Impact Engineering, Vol. 31, pp. 1223-1234,2005 https://doi.org/10.1016/j.ijimpeng.2004.07.009
  16. Rosenberg, Z., Dekel, E., Hohler, V., Stilp, A.J. and Wever, K., 'Hypervelocity Penetration of Tungsten Alloy Rods into Ceramic Tiles : Experiments and 2-D Simulations,' International Journal of Impact Engineering, Vol. 20, pp. 675-683, 1997 https://doi.org/10.1016/S0734-743X(97)87454-4
  17. Grace, F. I. and Rupert, N. L., 'Analysis of Long Rods Impacting Ceramic Targets at High Velocity,' International Journal of Impact Engineering, Vol. 20, pp. 281-292,1997 https://doi.org/10.1016/S0734-743X(97)87501-X
  18. Sharma, M. M. and Amateau, M. F., 'Processing of laminated hybrid ceramic composites,' Composites Part B, Vol. 29, pp. 189-194, 1998 https://doi.org/10.1016/S1359-8368(97)00009-7
  19. Lundberg, P., Renstrom, R. and Lundberg, B., 'Impact of metallic projectiles on ceramic targets: transition between interface defeat and penetration,' International Journal of Impact Engineering, Vol. 24, pp. 259-275, 2000 https://doi.org/10.1016/S0734-743X(99)00152-9
  20. Weber, K., Holmquist, T. J. and Templetion, D. W., 'The Response of Layered Aluminum Nitride Targets Subjected to Hypervelocity Impact,' International Journal of Impact Engineering, Vol. 26, pp. 831-841,2001 https://doi.org/10.1016/S0734-743X(01)00136-1
  21. Hubert, W., Meyer, J. and Kleponis, D. S., 'Modeling The High Strain Rate Behavior of Titanium Undergoing Ballistic Impact and Penetration,' International Journal of Impact Engineering, Vol. 26, pp. 509-521,2001 https://doi.org/10.1016/S0734-743X(01)00107-5
  22. Simha, C. H. M., Blessa, S. J. and Bedford, A., 'Computational modeling of the penetration response of a high-purity ceramic,' International Journal of Impact Engineering, Vol. 27, pp. 65-86, 2002 https://doi.org/10.1016/S0734-743X(01)00036-7
  23. Bao, Y., Su, S., Yang, J. and Fan, Q., 'Prestressed ceramics and improvement of impact resistance,' Materials Letters, Vol. 57, pp. 518-524, 2002 https://doi.org/10.1016/S0167-577X(02)00822-4
  24. Arias, A., Zaera, R., Puente, J. L. and Navarro, C., 'Numerical modeling of the impact behavior of new particulate-loaded composite materials,' Composite Structures, Vol. 61, pp. 151-159, 2003 https://doi.org/10.1016/S0263-8223(03)00038-2
  25. Forquin, P., Denoual, C., Cottenot, C. E. and Kild, F., 'Experiments and modelling of the compressive behaviour of two SiC ceramics,' Mechanics of Materials, Vol. 35, pp. 987-1002, 2003 https://doi.org/10.1016/S0167-6636(02)00321-6
  26. Zhang, G. J., Ando, M., Yang, J. F., Ohji, T. and Kanzaki, S., 'Boron carbide and nitride as reactants for in situ synthesis of boride-containing ceramic composites,' Journal of the European Ceramic Society, Vol. 24, pp. 171-178, 2004 https://doi.org/10.1016/S0955-2219(03)00607-1
  27. Goncalves, D.P., Melo, F. C. L., Klein, A. N., and Qureshi, H. A., 'Analysis and investigation of ballistic impact on ceramic/metal composite armour,' International Journal of Machine Tools & Manufacture, Vol. 44, pp. 307-316, 2004 https://doi.org/10.1016/j.ijmachtools.2003.09.005
  28. Yu. R. C., Ruiz, G. and Pandolfi, A., 'Numerical investigation on the dynamic behavior of advanced ceramics,' Engineering Fracture Mechanics, Vol. 71, pp. 897-911, 2004 https://doi.org/10.1016/S0013-7944(03)00016-X
  29. Holmquist, T. J. and Johnson, G. R., 'Modeling prestressed ceramic and its effect on ballistic performance,' International Journal of Impact Engineering, Vol. 31, pp. 113-127, 2005 https://doi.org/10.1016/j.ijimpeng.2003.11.002
  30. Lundberg, P. and Lundberg, B., 'Transition between interface defeat and penetration for tungsten projectiles and four silicon carbide materials,' International Journal of Impact Engineering, Vol. 31, pp. 781-792, 2005 https://doi.org/10.1016/j.ijimpeng.2004.06.003
  31. Wang, B., 'The behaviour of laminated composite plates as armor,' Materials Processing Technology, Vol. 68, pp. 279-287,1997 https://doi.org/10.1016/S0924-0136(96)00032-5
  32. Nandlall, D., 'Numerical simulation of the ballistic response of GRP plate,' Composites Science and Technology, Vol. 58, pp. 1463-1469, 1998 https://doi.org/10.1016/S0266-3538(98)00030-X
  33. Huang, X. G., Gillespie, J. W. J., Kumar, V. and Gavin, L., 'Mechanics of integral armor: discontinuous ceramic-cored sandwich structure under tension and shear,' Composite Structures, Vol. 36, pp. 81-90, 1996 https://doi.org/10.1016/S0263-8223(96)00068-2
  34. Fellows, N.A. and Barton, P.C., 'Development of impact model for ceramic-faced semi-infinite armour,' International Journal of Impact Engineering, Vol. 22, pp. 793-811,1999 https://doi.org/10.1016/S0734-743X(99)00017-2
  35. Lee, M. and Yoo, Y. H., 'Analysis of ceramic/metal armour systems,' International Journal of Impact Engineering, Vol. 25, pp. 819-829,2001 https://doi.org/10.1016/S0734-743X(01)00025-2
  36. Lynch, N. J., Bless, S. J., Brissenden, C., Berry, D. and Pedersen, B., 'Novel Penetrator Performance Against a Steel-Ceramic-Steel Target at 0 Over The Velocity Range 1800 to 2900 m/s,' International Journal of Impact Engineering, Vol. 26, pp. 475-486, 2001 https://doi.org/10.1016/S0734-743X(01)00099-9
  37. Holmquist, T., Templeton, D. W. and Bishnoi, K. D., 'Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications,' International Journal of Impact Engineering, Vol. 25, pp. 211-231, 2001 https://doi.org/10.1016/S0734-743X(00)00046-4
  38. Hohler, V., Weber, K., Tham, R., James, B., Barker, A. and Pickup, I., 'Comparative Analysis of Oblique Impact on Ceramic Composite Systems,' International Journal of Impact Engineering, Vol. 26, pp. 333-344, 2001 https://doi.org/10.1016/S0734-743X(01)00102-6
  39. Fritz, L., 'Carbon, polyethylene and PBO hybrid fiber composites fot structural lightweight armor,' Composite: Part A, Vol. 33, pp. 211-231, 2002 https://doi.org/10.1016/S1359-835X(01)00095-1
  40. Yadav, S. and Ravichandran, G., 'Penetration resistance of laminated ceramic/polymer structures,' International Journal of Impact Engineering, Vol. 28, pp. 557-574, 2003 https://doi.org/10.1016/S0734-743X(02)00122-7
  41. Chin, E. S.C., 'Army focused research team on functionally graded armor composites,' Materials Science and Engineering A, Vol. 259, pp. 155-161, 1999 https://doi.org/10.1016/S0921-5093(98)00883-1
  42. Bendor, G., Dubinsky, A., Elperin, T. and Frage, N., 'Optimization of two component ceramic armor for a given impact velocity,' Theoretical and Applied Fracture Mechanics, Vol. 33, pp. 185-190, 2000 https://doi.org/10.1016/S0167-8442(00)00013-6
  43. Wang, Z. and Nakamura, T., 'Simulations of crack propagation in elastic plastic graded materials,' Mechanics of Materials, Vol. 36, pp. 601-622, 2004 https://doi.org/10.1016/S0167-6636(03)00079-6
  44. Jin, Z.H. and Dodds, R. H. Jr., 'Crack growth resistance behavior of a functionally graded material: computational studies,' Engineering Fracture Mechanics, Vol. 71, pp. 1651-1672, 2004 https://doi.org/10.1016/j.engfracmech.2003.08.002
  45. Hall, I. W. and Den, M., 'High Strain Rate Behavior of a Sic Particulate Reinforced Alumina Ceramic Matrix Composite,' Scripta Materialia, Vol. 38, No. 4, pp. 667-674, 1998 https://doi.org/10.1016/S1359-6462(97)00511-3
  46. Sherman, D., 'Impact failure mechanisms in alumina tiles on finite thickness support and the elect of confinement,' International Journal of Impact Engineering, Vol. 24, pp. 313-328, 2000 https://doi.org/10.1016/S0734-743X(99)00147-5
  47. Mahdi, S., Gamaa, B.A., Yarlagadda, S. and Gillespie, J. W., 'Effect of the manufacturing process on the interfacial properties and structural performance of multi-functional composite structures,' Composites: Part A, Vol. 34, pp. 635-647, 2003 https://doi.org/10.1016/S1359-835X(03)00091-5
  48. Mahdi, S. and Gillespie, J. W., 'Finite element analysis of tile-reinforced composite structural armor subjected to bending loads,' Composites : Part B, Vol. 35, pp. 57-71, 2004 https://doi.org/10.1016/j.compositesb.2003.10.001
  49. Pallone, A., Demaree, J. and Adams, J., 'Application of nondestructive ion beam analysis to measure variations in the elemental composition of armor materials,' Nuclear Instruments and Methods in Physics Research: Part B, Vol. 219, pp. 755-758, 2004 https://doi.org/10.1016/j.nimb.2004.01.157
  50. Kim, H. J., Yuk, J. I. and Lee, S. G., 'Dynamic Failure Behavior of Ceramic / Fiber-Reinforced Composites under High Speed Impact Loading,' Korean Journal of Materials Research, Vol. 7, No.9, pp. 795-804, 1997
  51. Kim, C., Kim, S. M. and Kang, T. J., 'Energy Absorption Mechanism of Kevlar Multiaxial Warp Knitted Fabric Composite under Impact Loading,' Journal of the Korean Society for Composite Materials, Vol. 11, No.6, 1998
  52. Sohn, S. W. and Hong, S. H., 'Research Trends on the Ballistic Protection Materials and Development of Bullet-proof Helmet,' Journal of the Korean Society of Precision Engineering, Vol. 19, No.7, pp. 7-19, 2002