Seismic Techniques for the Integrated Assessment of Structural Integrity of Concrete Runway

콘크리트 활주로 건전도상태의 종합평가를 위한 비파괴 탄성파기법

  • Published : 2005.06.01

Abstract

Concrete pavement may suffer from material deterioration or structural problems, which lead to surface cracks and deflection of a concrete pavement. Degraded concrete pavement, when it is still under operation, should be recovered by an urgent maintenance to avoid the discontinued service leading to the significant traffic problems and economic loss. Seismic techniques are good tools to assess the structural integrity of concrete runway. It is because seismic techniques can evaluate engineering properties nondestructively and quickly and the evaluation can be extended to subgrade. In this study, a series of numerical simulations of stress-wave propagation were performed to verify feasibility of seismic techniques as an assessment tool. Based on the results of the numerical simulation, a framework of using seismic techniques was presented fur the nondestructive integrated assessment fur structural integrity of concrete runway. And the presented framework was applied to $\bigcirc\bigcirc$ concrete runway with surface cracks, which required urgent maintenance, to identify the causes of the surface cracks. The results obtained from the structural integrity assessment were compared with the measurements of the cores collected from the same runway for verification of the presented framework.

콘크리트 포장에는 재료의 결함이나 구조적 문제점으로 인하여 표면균열, 슬래브의 처짐 등과 같은 문제가 발생할 수 있다. 결함이 발생한 콘크리트 포장이 현재 운용중일 때 심각한 교통문제와 경제적 손실을 초래하지 않기 위해서는 신속하게 유지관리가 이루어져야 한다. 이러한 콘크리트 포장의 신속한 유지관리를 위해서 탄성파 기법이 효율적으로 활용될 수 있는데, 이는 탄성파 기법으로 재료의 공학적 물성과 건전도 상태를 비파괴적, 비관입적으로 신속하게 측정할 수 있고, 또한 콘크리트 하부 기층, 보조기층, 노반의 강성까지 측정할 수 있는 장점을 가지고 있기 때문이다. 본 연구에서는 건전도 평가기법으로서 비파괴 탄성파 기법의 적합성을 평가하기 위하여 탄성파 기법에 관한 수치해석을 수행하였고, 수치해석 결과를 근간으로 하여 콘크리트 활주로의 재료적 결함, 구조적 건전도 상태를 종합적으로 평가하는 비파괴기법 평가체제를 제안하였다. 표면균열이 국부적으로 발달한 $\bigcirc\bigcirc$ 콘크리트 활주로에 대하여 본 연구에서 제안한 평가체제를 적용하여 표면균열의 원인을 규명하였다. 탄성파 건전도 평가로 획득한 활주로의 건전도 상태는 현장에서 채취한 코어와 코어시험 결과를 이용하여 비교함으로써 본 연구에서 제안한 비파괴 탄성파 기법 평가체제의 신뢰성을 확인하였다.

Keywords

References

  1. Al-Hunaidi, M.O. (1994), 'Analysis of Dispersed Multi-Mod Signals of the SASW Method Using Multiple Filter/Crosscorrelation Technique', Soil Dynamics and Earthquake Engineering, Vol.13, pp.13-24 https://doi.org/10.1016/0267-7261(94)90037-X
  2. Gucunski, N and Woods, R. D. (1992), 'Numerical Sinulation of the SASW Test', Soil Dynamics and Earthquake Engineering, Vol. 11, pp.213-227 https://doi.org/10.1016/0267-7261(92)90036-D
  3. Heisey, S., Stokoe, K. H., II, and Meyer, A. H. (1988), 'Moduli of PavementSystems from Spectral Analysis of Surface Waves,' In Transportation Research Record 852, TRB, National Research Council, Washington, D.C., pp.22-31
  4. Joh, S. H. (1996), Advanced in Interpretation and Analysis Techniques for Spectral-Analysis-of-Surface-Waves (SASW) Measurements, Ph. D. Dissertation, The Unversity of Texas at Austin
  5. Kausel, E. and Peek, R (1982), 'Dynamic Loads in the Interior of a Layered Stratum: An Explicit Solution', Bull. Seismol. Soc. Am. Vol.75, No.5, pp.1459-1508
  6. Kausel, E. and Roesset, J. M. (1981), 'Stiffness Matrices for Layered Soils', Bull. Seism. Soc. Am., Vol.71, pp.1743-1761
  7. Nazarian S. and Stokoe, K. H., II (1984), 'Nondestructive Testing of Pavements Using Surface Waves', In Transportation Research Record 993, TRB, National Research Council, Washington, D.C., pp.132-144
  8. Nazarian S. and Stokoe, K. H., II (1989), 'Nondestructive Evaluation of Pavements by Surface Wave Method', In Nondestructive Testing of Pavements and Backcalculation of Moduli, STP 1026, A.J. Bush III and G. Y. Baladi (eds.), ASTM, Philadelphia, Pa., pp.119-137
  9. Nazarian S., Stokoe, K. H., II, and Briggs, R. C., and Rogers, R.(1988), 'Determination of Pavement Layer Thicknesses and Moduli by SASW Method', In Transportation Research Record 1196, TRB, National Research Council, Washington, D.C
  10. Nazaraian, Yuan, S., D., Weissinger, E., and McDaniel, M, (1997), 'Comprehensive Quality Control of Portland Cement Concrete with Seismic Methods', In Transportation Research Record 1575, TRB, National Research Council, Washington, D.C. pp.102-111
  11. Roesset, J. M., Chang, D.-W, Stokoe, K. H., II, and Aouad, M, (1990), 'Modulus and Thickness of the Pavement Surface Layer from SASW Tests', In Transportation Research Record 1260, TRB, National Research Council, Washington, D.C
  12. Sansalone M. J., Lin, J. M. and Streett, W. B. (1996), 'A New Procedure for Determining the Thickness of Concrete Highway Pavements Using Surface Wave Speed Measurements and the Impact-Echo Method', In Innovations in Nondestructive Testing, a Special Publication of the American Concrete Institute
  13. Sansalone, M., and Carino, N. J. (1986), Impact Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves, NBSIR 86-3452. National Technical Information Service, Springfield, Va., Sept., 222 pp
  14. Sheu, J. C., Rix, G. J., and Stokoe, K. H., II (1988), 'Rapid Determination of Modulus and Thickness of Pavement Surface Layer', Presented at 67th Annual Meeting of the Transportation Research Board, Washington, D.C., Jan