초록
본 연구는 공주지역의 지표변화를 분석하기 위해 우도비 기반의 베이지안 예측모델을 이용하여 지리공간 정보와 지표변화와의 연관성 및 미래의 지표변화를 탐지하였다. 지표변화 지역은 위성사진을 토지피복분류 한 후 선분류 후비교법을 이용하여 변화지역을 추출하였다. 지표변화와 관련이 있는 지리공간 정보는 GIS 환경에서 구축하였으며, 우도비를 이용하여 지표변화 예측도를 작성하였다. 분석결과, 도시지역 및 농업지역 지표변화에 가장 큰 영향을 미치는 주제도는 고도, 하계망, 인구밀도, 도로, 인구이동, 총사업체수, 지가 등이다. 또한 산림지역 지표변화에 영향을 미치는 주제도는 고도, 경사도, 인구밀도, 인구이동, 지가 등이다. 지표변화 분석결과, 도시지역은 금강을 중심으로 구도심과 신도심지역의 도시 확산이 이루어지고, 인터체인지 및 국도를 따라 시가화 지역이 확산 될 것으로 예측되었다. 농업지역은 금강의 소지류 및 인접지역과 연결되는 국도주변 지역이 변화가 일어날 확률이 높다. 산림지역은 대부분 남동쪽에 위치하고 있는데, 그 원인은 밤나무 재배단지가 본 지역에 넓게 나타나면서 산림훼손이 일어날 확률이 높은 것으로 예측되었다. 예측비율 곡선을 이용하여 검증한 결과, 지표변화가 일어날 확률이 가장 높은 상위 $10\%$지역에서 도시지역은 $80\%$, 농업지역은 $55\%$, 산림지역은 $40\%$정도의 예측능력을 보였다. 따라서, 본 통합 모델은 산림지역 예측에는 부적합한 것으로 볼 수 있어서, 향후 새로운 주제도 선정 및 예측모델 등이 필요하다. 결론적으로 본 방법은 향후 토지피복 변화 연구를 위한 효과적인 방법 중의 하나로 적용될 수 있을 것으로 기대된다.
In this study, we investigated the change of future land-surface and relationships of land-surface change with geo-spatial information, using a Bayesian prediction model based on a likelihood ratio function, for analysing the land-surface change of the Gongju area. We classified the land-surface satellite images, and then extracted the changing area using a way of post classification comparison. land-surface information related to the land-surface change is constructed in a GIS environment, and the map of land-surface change prediction is made using the likelihood ratio function. As the results of this study, the thematic maps which definitely influence land-surface change of rural or urban areas are elevation, water system, population density, roads, population moving, the number of establishments, land price, etc. Also, thematic maps which definitely influence the land-surface change of forests areas are elevation, slope, population density, population moving, land price, etc. As a result of land-surface change analysis, center proliferation of old and new downtown is composed near Gum-river, and the downtown area will spread around the local roads and interchange areas in the urban area. In case of agricultural areas, a small tributary of Gum-river or an area of local roads which are attached with adjacent areas showed the high probability of change. Most of the forest areas are located in southeast and from this result we can guess why the wide chestnut-tree cultivation complex is located in these areas and the capability of forest damage is very high. As a result of validation using a prediction rate curve, a capability of prediction of urban area is $80\%$, agriculture area is $55\%$, forest area is $40\%$ in higher $10\%$ of possibility which the land-surface change would occur. This integration model is unsatisfactory to Predict the forest area in the study area and thus as a future work, it is necessary to apply new thematic maps or prediction models In conclusion, we can expect that this way can be one of the most essential land-surface change studies in a few years.