직접메탄올 연료전지용 유무기 하이브리드 전해질 - 술폰화된 SEBS (SSEBS)-clay 하이브리드 막의 제조 및 물성 -

Organic/inorganic Hybrid Electrolytes for the Application of Direct Methanol Fuel Cell (DMFC) - Preparation and Properties of Sulfonated SEBS (SSEBS)-clay Hybrid Membranes -

  • 남상용 (경상대학교 공과대학 고분자공학과) ;
  • 박병길 (한양대학교 공과대학 화학공학과) ;
  • 공성호 (한양대학교 공과대학 화학공학과) ;
  • 김영진 (경상대학교 공과대학 고분자공학과)
  • Nam Sang Yong (Department of Polymer Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Park Byung-Kil (Department of Chemical Engineering, Hanyang University) ;
  • Kong Sung-Ho (Department of Chemical Engineering, Hanyang University) ;
  • Kim Young Jin (Department of Polymer Science and Engineering, Engineering Research Institute, Gyeongsang National University)
  • 발행 : 2005.06.01

초록

본 연구에서는 SEBS와 여러 가지의 유기화물로 처리된 MMT type의 clay를 이용하여 SSEBS-clay 하이브리드 막을 용액법으로 제조하였다. clay의 함량은 5 phr로 고정하였다. 용액법을 사용하여 clay를 SEBS에 분산시켰으며, 제조된 SSEBS-clay 하이브리드에서 clay의 특성피크가 완전히 박리되거나 이동하는 XRD 결과로부터 고분자의 clay 층간삽입을 확인하였다. Clay의 종류에 따라서 제조된 SSEBS-clay 하이브리드 막의 가스투과도, 기계적 물성 및 열적 성질을 측정하였다. SSEBS-clay 하이브리드 막은 clay 자체의 도입과 층간거리의 확대로 기체분자의 tortuosity를 증가시켜서 가스투과도를 저하시키는 것을 확인하였다.

Sulfonated poly(styrene-ethylene-butadiene-styrene) (SSEBS)-clay hybrid membranes were prepared by solution method. In the preparation of hybrid membrane, the amount of clay content was fixed to 5 phr and montmorillonite (MMT) was fully exfoliated by the SEBS and it was confirmed by X-ray diffraction method. D-spacing of the characteristic peak from MMT plate in WAXD was fully diminished. Gas permeability, mechanical properties and thermal properties of the SSEBS-clay hybrid membranes were investigated. Gas permeability through the SSEBS-clay hybrid membranes decreased due to increased tortuosity made by exfoliation of clay in SEBS.

키워드

참고문헌

  1. O. Savodogo, J. New Mat. Electrochem. Systems, 1, 47 (1998)
  2. J. Larminie and A. Dicks, 'Fuel cell systems explained', John Wiley & Sons, West Sussex, England (2000)
  3. A. Heinzel and V. M. Barragan, 'A review of the state of art of the methanol crossover in direct methanol fuel cell', J. Power Source, 84, 70 (1999)
  4. Y. M. Lee and H. B. Park, 'Development of membrane materials for direct methanol fuel cell', Membrane J, 10, 103 (2000)
  5. J. Cruickshank and K. Scott, 'The degree and effort of methanol crossover in the direct methanol fuel cell', J. Power Source, 70, 40 (1998)
  6. H. S. Shin, C. S. Lee, J. H. Jun, S. Y. Jung, J. W. Rhim, and S. Y. Nam, 'Preparation and characterization of ion exchange membrane for direct methanol fuel cell (DMFC) using sulfonated polysulfone', Membrane J., 12, 247-254 (2002)
  7. J. W. Rhim, H. B. Park, C. S. Lee, J. H. Jun, D. S. Kim, and Y. M. Lee, 'Crosslinked poly(vinly alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes', J. Membr. Sci., 238(1-2), 143-151 (2003)
  8. K. Yano, A. Usuki, A. Oakda, T. kurauchi, and O. Kamigaito, 'Synthesis and properties of polyimideclay hybrid', J. Polym, Sci.; Polym. Chem., 31, 2493 (1993)
  9. J. Won, H. H. Park, Y. J. Kim, S. W. Choi, H. Y. Ha, I.-H. Oh, H. S. Kim, Y. S. Kang, and K. J. Ihn, 'Fixation of Nanosized Proton Transport Channels in Membranes', Macromolecules, 36, 3228 (2003)
  10. M. Alexandre, G. Beyer, C. Henrist, R. Cloots, A. Rulmont, R. Jerome, and P. Dubois, 'Preparation and properties of layered silicate nanocomposites based on ethylene vinyl acetate copolymers', Macromol. Rapid Commun., 22, 643 (2001) https://doi.org/10.1002/1521-3927(20010101)22:1<1::AID-MARC1>3.0.CO;2-T
  11. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, and A. Oakda, 'Preparation and mechanical properties of polypropylene-clay hybrids', Macromolecules, 30, 6333 (1997) https://doi.org/10.1021/ma961786h
  12. M. Kato, A. Usuki, and A. Oakda, Synthesis of polypropylene oligomer-clay intercalation compounds', J. Appl. Polym. Sci., 66, 1781 (1997)
  13. Y. H. Lee, S. K. Hong, K. S. Yoon, I. S. Choi, S. G. Lee, J. H. Lee, and K. Y. Choi, 'Intercalation of polycarbonate/montmoriIIonite nanocomposites', Polymer(Korea), 25, 818 (2001)
  14. A. Oakda and A. Usuki, 'The chemistry of polymerclay hybrids', Mater. Sci. Eng., C3, 109 (1995)
  15. T. Lan, P. D. Kavirata, and T. J. Pinnavia, 'Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites', Chem. Mater., 7, 2114 (1995)
  16. R. Krishanmoorti, R. A. Vaia, and E. P. Giannelis, 'Structure and dynamics of polymer-layered silicate nanocomposites', Chem. Mater., 8, 1728 (1996)
  17. R. A. Vaia, S. Vasudevan, W. Krawies, L. G. Seanlon, and E. P. Giannelis, 'New polymer electrolyte nanocomposites: melt intercalation of poly (ethylene oxide) in mica-type silicates', Adv. Mater., 7, 154 (1995)
  18. A. Usuki, M. Kawasumi, Y. Kojima, Y. Fukushima, A. Oakda, T. kurauchi, and O. Kamigaito, 'Synthesis of nylon6-cIay hybrid', J. Mater. Res., 8, 1179 (1993) https://doi.org/10.1557/JMR.1993.1179
  19. H. P. KIug and L. E. Alexander, X-ray diffraction procedures 2nd ed. : Wiley, New York 966 (1974)
  20. P. H. Nadeau, J. M. Tait, W. J. McHardy, and M. J. Wilson, 'Interstratified X-ray diffraction characteristics of physical mixtures of elementary clay particles', Clay Minerals, 19, 67 (1984)
  21. K. Yano, A. Usuki, A. Oakda, T. kurauchi, and O. Kamigaito, 'Synthesis and properties of polyimideclay hybrid', J. Polym, Sci.; Polym. Chem., 31, 2493 (1993)
  22. M. Alexandre, G. Beyer, C. Henrist, R. Cloots, A. Rulmont, R. Jerome, and P. Dubois, 'Preparation and properties of layered silicate nanocomposites based on ethylene vinyl acetate copolymers', Macramol. Rapid Commun., 22, 643 (2001) https://doi.org/10.1002/1521-3927(20010101)22:1<1::AID-MARC1>3.0.CO;2-T
  23. J. Zhu and C. A. Wilkie, 'Thermal and fire studies on polystyrene-clay nanocomposites', Polym, Int., 49, 1158 (2000)