DOI QR코드

DOI QR Code

Speed Estimation of PMSM Using Support Vector Regression

SVM Regression을 이용한 PMSM의 속도 추정

  • 한동창 (영남대학교 전자정보공학부) ;
  • 백운재 (영남대학교 전자정보공학부) ;
  • 김성락 (영남대학교 전자정보공학부) ;
  • 김한길 (영남대학교 전자정보공학부) ;
  • 심준홍 (영남대학교 전자정보공학부) ;
  • 박광원 (영남대학교 전자정보공학부) ;
  • 이석규 (영남대학교 전자정보공학부) ;
  • 박정일 (영남대학교 전자정보공학부)
  • Published : 2005.07.01

Abstract

We present a novel speed estimation of a Permanent Magnet Synchronous Motor(PMSM) based on Support Vector Regression(SVR). The proposed method can estimate wide speed range, including 0.33Hz with full load, accurately in the steady and transient states where motor parameters variations are known without parameter estimator. Moreover, the method does not need offline training previously but is trained on-line. The training starts with the PMSM operation simultaneously and estimates the speed in real time. The experimental results shows the validity and the usefulness of the proposed algorithm for the 0.4Kw PMSM DSP(TMS320VC33) drive system.

Keywords

References

  1. L. A. Jones, J. H. Lang, 'A state observer for the permanent magnet synchronous motor,' vol. 36, no. 3, 374-382, IEEE Trans. Ind. Electronics. 1989 https://doi.org/10.1109/41.31500
  2. J. S. Kim. and S. Sul, 'High performance PMSM drive without rotational position sensors using reduced order observer,' 75-82, IEEE-IAS Conf. Rec. 1995 https://doi.org/10.1109/IAS.1995.530286
  3. A. Germano, F. Parasiliti, and M. Tursini, 'Sensorless speed control of a PM synchronous motor drive by kalman filter, state observer for the permanent magnet synchronous motor,' vol. 2, 540-544, Proc. of International Conference on Electrical Machines(lCEM),Paris. 1994
  4. S. Bolognani, R. Oboe, and M. Zigliotto, 'Sensorless full digital PMSM drive with EKF estimation of speed and rotor position,' vol. 46, no. 1, 184-191, IEEE Trans. Ind. Electronics. 1999 https://doi.org/10.1109/41.744410
  5. S. H. Kim and G-T. Park, 'Speed-sensorless vector control of an induction motor using neural network speed estimation,' vol.48, no.3, 609-614, IEEE Trans. Ind. Electronics. 2001 https://doi.org/10.1109/41.925588
  6. Y. S. Kim, S. K. Kim and Y. A. Kwon, 'MRAS based sensorless control of permanent magnet synchronous motor,' 132-137, SICE Annual Conference in Fukui, Fukui University, Japan. 2003
  7. W. J. Back, D. C. Han and S. G. Lee, 'Support-vector-machine based sensorless control of permanent magnet synchronous motor,' vol. 46, no. 1, 149-152, ICCAS 2004, Thailand. 2004
  8. M. Jufer, R. Osseni, 'Back-EMF indirect detection for self commutation of synchronous motor,' vol. 2, 1125-1129, Proc. Of European Conference on Power Electronics and Applications(EPE).1987
  9. M. Schroedl, 'Sensorless control of AC machines at low speed and standstill based on the INFORM method.' vol. 1, 270-277, Proc. of the Industry Application Society Annual Meeting. 1996 https://doi.org/10.1109/IAS.1996.557028
  10. A. Consoli, G. Scarcella, Testa, 'Sensorless control of PM synchronous motor at zero speed,' vol. 1, 270-277, Proc. of the Industry Application Society Annual Meeting. 1999 https://doi.org/10.1109/IAS.1999.801632
  11. V. Vapnik., 'The nature of statistical learning theory 2nd ed,' 1999
  12. V. Cherkassky and F. Mulier, Learning from data: concepts, theory, and methods, John Wiley & Sons. 1998
  13. S. Gunn, 'Support vector machines for classification and regression,' ISIS Technical Report, U. of Southampton. 1998
  14. K.-R. Cho, J.-K. Seok and D.-C. Lee, 'Mechanical parameter identification of servo systems using robust support vector regression,' 588-593, Proc. Advanced Motion Control. 2004 https://doi.org/10.1109/PESC.2004.1355080
  15. A. Smola and B. Scholkopf, 'A tutorial on support vector regression,' Technical Report NC2-TR-1998-030, NeuroCOLT2. 1998