Characterization of Synthetic Na-beidellite

합성 Na-베이델라이트의 광물특성

  • Ryu Gyoung-Won (Chungbuk University, Department of Earth and Environmental Sciences) ;
  • Chae Soo-Chun (Korea Institute of Geoscience and Mineral Resources, Minerals and Materials Processing Division) ;
  • Bae In-Kook (Korea Institute of Geoscience and Mineral Resources, Minerals and Materials Processing Division) ;
  • Choi Sang-Hoon (Chungbuk University, Department of Earth and Environmental Sciences) ;
  • Jang Young-Nam (Korea Institute of Geoscience and Mineral Resources, Minerals and Materials Processing Division)
  • 류경원 (충북대학교 지구환경과학과) ;
  • 채수천 (한국지질자원연구원 자원활용소재연구부) ;
  • 배인국 (한국지질자원연구원 자원활용소재연구부) ;
  • 최상훈 (충북대학교 지구환경과학과) ;
  • 장영남 (한국지질자원연구원 자원활용소재연구부)
  • Published : 2005.06.01

Abstract

Beidellite, a member of the smectite group, was synthesized hydrothermally from dickite. Physical and chemical properties of the synthetic Na-beidellite were characterized by the analytical methods of XRD, IR, TG, DTA, EDS, XRF and ICP. The result of Greene-Kelly test indicates that the synthesized smectite is Na-beidellite. IR spectrum of synthesized beidellite exhibited Al-O-H bending vibration at $818\;cm^{-1}\;and\;770\;cm^{-1}$ which was observed particularly in pure beidellite. TGA analysis revealed that the synthesized Na-beidellite comprises $16\;wt\%$ of water. DTA curve showed an endothermic peak at $117^{\circ}C$ due to dehydration reaction and peaks at $482^{\circ}C$ and $685^{\circ}C$ due to dehydroxylation reaction. The clay mineral was transformed to mullite and cristobalite at the temperature of $1028^{\circ}C$. The CEC value, Methylene Blue test and swelling capacity was determined to be $116\~118\;cmol/kg,\;84\~91\%,\;29\~32\;mL/2g$, respectively. The chemical composition of the synthesized phase was identified as $Na_{0.5}Al_{2.5}Si_{3.5}O_{10}(OH)_2$ from EDS and XRF analyses.

딕카이트로부터 스멕타이트를 수열법으로 합성하고 XRD, IR, TG, DTA, EDS 및 XRF를 사용하여 물리${\cdot}$화학적 특성을 분석하였다. 합성 스멕타이트에 대해 Greene-Kelly 시험을 한 결과, 베이델라이트임을 확인하였다. IR 분석결과, 합성 베이델라이트의 Al-OH 진동에 의한 특징적인 흡수띠인 818, $770\;cm^{-1}$ 피크가 관찰되었으므로 순수한 베이델라이트임을 확인되었다. DTA-7G 실험결과 합성된 베이델라이트는 약 $16\%$의 수분을 함유하고 있었으며, $117^{\circ}C$에서 탈수 작용이 발생하고, $482^{\circ}C$$685^{\circ}C$ 두 곳에서 탈수산화 작용에 의한 흡열 반응이 나타났다. 또한, $1028^{\circ}C$에서 합성 반응물은 뮬라이트와 크리스토발라이트로 재결정되었다. CEC, M.B. 시험 및 팽윤도를 분석한 결과, 각각 $l16\~l18$ cmol/kg, $84\~91\%,\;29\~32$ mL/2 g으로 양호한 결과를 나타내었다. EDS 및 XRF 분석 결과, 구조식은 $Na_{0.5}Al_{2.5}Si_{3.5}O_{10}(OH)_2$이었다.

Keywords

References

  1. 류경원, 장영남, 배인국, 채수천, 최상훈 (2004) 틱카이트로부터 스멕타이트의 수열합성. 한국광물학회지, 14, 267-276
  2. 노진화 (2004) 규질 이암으로부터 유기 스멕타이트의 저온 수열합성. 한국광물학회지, 17, 49-59
  3. Borchardt, G.A. (1977) Montmorillonite and other smectite minerals: in Minerals in Soil Environments. J.B. Dixon and S.B. Weed, eds., Soil Sci. Soc. Amer., Madison, Wisconsin, 293-330
  4. Brandt, K.B. and Kydd, R.A. (1998) Gallium and chromium substitution for aluminum in synthesized beidellite. Clays and Clay Minerals, 46, 139-144 https://doi.org/10.1346/CCMN.1998.0460203
  5. Brindley, G.W. and Lemaitre, J. (1987) Thermal oxidation and reduction reactions of clay minerals: in Chemistry of Clay and Clay Minerals: A.CD. Newman, ed., Longman Scientific and Technical (Essex), Mineralogical Society, London, 319-370
  6. Bystrom-Brusewitz, A.M. (1975) Studies of the Li-test to distinguish beidellite and montmotillonite: in Proceedings of the International Clay Conference, Applied Publishing Ltd., Wilmette, Illinois, 419-428
  7. Cuadros, J., Delgado, A., Cardenete, A., Reyes, E., and Linares, J. (1994) Kaolinite/Montmorillonite resembles beidellite. Clays and Clay Minerals, 42, S, 643-651 https://doi.org/10.1346/CCMN.1994.0420517
  8. Farmer, V.C. and Russell, J.D. (1972) Interlayer complexes in layer silicates. The structure of water in lameliar ionic solutions. Trans, Faraday Soc., 67, 2737-2749 https://doi.org/10.1039/tf9716702737
  9. Farmer, V.C. (1974) The Infrared Spectra of Minerals. Mineralogical Society, London
  10. Kawano, M. and Tomita, K. (1995) Experimental study on the formation of clay minerals from obsidian by interaction with acid solution at 150 and $200^{\circ}C$. Clays and Clay Minerals, 43, 212-222 https://doi.org/10.1346/CCMN.1995.0430208
  11. Kloprogge, J. T., Jansen, J.B.H., and Geus, J. W. (1990) Characterization of synthetic Na-beidellite. Clays and Clay Minerals, 38, 409-414 https://doi.org/10.1346/CCMN.1990.0380410
  12. Mackenzie, R.C. (1970) Simple phyllosilicates based on gibbsite- and brucite-like sheets: in Differential Thermal Analysis. Vol. 1, R.C. Mackenzie, ed., Academic Press, New York, 504-511
  13. Madejova, J. (2002) Review FTIR techniques in clay mineral studies. Vibrational spectroscopy, 944, 1-10
  14. MalIa, P.B. and Douglas, L.A. (1987) Layer charge properties of smectites and vermiculites: Tetrahedral vs. octahedral. Soil Sci. Soc, Amer. J., 51, 1362-1366 https://doi.org/10.2136/sssaj1987.03615995005100050048x
  15. Nadeau, P.H., Farmer, V.C., McHardey, W.J., and Bain, D.C. (1985) Compositional variations of the Unterrupsroth beidellite. Am. Mineral., 70, 1004-1010
  16. Paterson, E. and Swaffield, R. (1987) Thermal analysis: in A Handbook of Determinative Methods in Clay Mineralogy. MJ. Wilson, ed., Chapman and Hall, New York, 99-132
  17. Plee, D., Gatineau, L., and Fripiat, J.J. (1987) Pillaring processes of smectites with and without tetrahedral substitution. Clay and Clay Minerals, 35, 81-88 https://doi.org/10.1346/CCMN.1987.0350201
  18. Post, J.L. and Borer, L. (2002) Physical properties of selected illites, beidellite and mixed-layer illite- beidellites from southwestern Idaho, and their infrared spectra. Clay Science, 22, 77-91 https://doi.org/10.1016/S0169-1317(02)00129-1
  19. Russell, J.D. (1987) in 'A Handbook of Determinative Methods in Clay Mineralogy,' (MJ. Wilson, Ed.), 133, Blackie, Glasgow
  20. SCIFAX DTA Data Index (1962) Compiled by R.C. Mackenzie, Cleaver-Hume Press, London
  21. Wilson, M.J. (1987) X-ray powder diffraction methods. in A Handbook of Determinative Methods in Clay Mineralogy, M. J. Wilson, ed., Blackie, London, 26-98