Inter Simple Sequence Repeat (ISSR) Polymorphism and Its Application in Mulberry Genome Analysis

  • Published : 2005.06.01

Abstract

Molecular markers have increasingly been used in plant genetic analysis, due to their obvious advantages over conventional phenotypic markers, as they are highly polymorphic, more in number, stable across different developmental stages, neutral to selection and least influenced by environmental factors. Among the PCR based marker techniques, ISSR is one of the simplest and widely used techniques, which involves amplification of DNA segment present at an amplifiable distance in between two identical microsatellite repeat regions oriented in opposite direction. Though ISSR markers are dominant like RAPD, they are more stable and reproducible. Because of these properties ISSR markers have recently been found using extensively for finger printing, pohylogenetic analysis, population structure analysis, varietal/line identification, genetic mapping, marker-assisted selection, etc. In mulberry (Morus spp.), ISSR markers were used for analyzing phylogenetic relationship among cultivated varieties, between tropical and temperate mulberry, for solving the vexed problem of identifying taxonomic positions of genotypes, for identifying markers associated with leaf yield attributing characters. As ISSR markers are one of the cheapest and easiest marker systems with high efficiency in generating polymorphism among closely related varieties, they would play a major role in mulberry genome analysis in the future.

Keywords

References

  1. Aggarwal, R. K., D. Udayakumar, P. S. Hendre, A. Sarkar and L. I. Singh (2004) Isolation and characterization of six novel microsatellite markers for mulberry (Morus indica). Mole Ecol. Notes 4, 477-479 https://doi.org/10.1111/j.1471-8286.2004.00718.x
  2. Ajibade, S. R., N. F. Weeden and S. M. Chite (2000) Inter-simpIe sequenee repeat analysis of genetic relationships in the genus Viglla. Euphytica 111, 47-55 https://doi.org/10.1023/A:1003763328768
  3. Albani, M. C. and M. J. Wilkinson (1998) Inter simple sequence repeat polymerase chain reaction for the detection of somaclonal variation. Plant Breeding 117, 573-575 https://doi.org/10.1111/j.1439-0523.1998.tb02210.x
  4. Akagi, H., Y. Yokozeki, A. Inagaki, A. Nakamura and T. Fujimura (1996) A co-dominant DNA marker closely linked to the rice nuclear restorer gene, Rf-1, identified with inter-SSR fingerprinting. Genome 39, 1205-1209 https://doi.org/10.1139/g96-152
  5. Awasthi, A. K., G. M. Nagaraja, G. V. Naik, S. Kanginakudru, K. Thangavelu and J. Nagaraju (2004) Genetic diversity in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC genetics 5, 1
  6. Bhattacharya, E. and S. A. Ranade (2001) Molecular distinction among varieties of Mulberry using RAPD and DAMD profiles. BMC Plant Biol. 3, 1
  7. Blair, M. W., O. Panaud and S. R. McCouch (1999) Inter-simpie sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryzasativa L). Theor. Appl. Genet. 98, 780-792 https://doi.org/10.1007/s001220051135
  8. Burgess, T., M. J. Wingfield and B. W. Winfield (2001) Simple sequence repeat markers distinguish among morphotypes of Sphaeropsis sapinea. Appl. Environ. Microbiol. 67, 354-362 https://doi.org/10.1128/AEM.67.1.354-362.2001
  9. Charters, Y. M. and M. J. Wilkinson (2000). The use of self-pollinated progenies as 'in-groups' for the genetic characterization of cocoa germ plasm. Theor. Appl. Genet. 100, 160-166 https://doi.org/10.1007/PL00002903
  10. Chatterjee, S. N. and T. P. Mohandas (2003) Identification of ISSR markers associated with productivity traits in silkworm Bombyx mori L. Genome 46, 438-447 https://doi.org/10.1139/g03-024
  11. Chatterjee, S. N., G. M. Nagaraja, P. P. Srivastava and G. Naik (2004). Morphological and molecular variation of Morus laevigata in India. Genetica 121, 133-143 https://doi.org/10.1023/B:GENE.0000040384.24482.4b
  12. Damgaard, J. and F. A. H. Sperling (2001) Phylogeny of the spider genus Gerris Fabricius (Heteroptera:Garridae) based on COl mt DNA, $EF-1{\alpha}$ nuclear DNA and morphology. System. Entomol. 26, 241-254 https://doi.org/10.1046/j.1365-3113.2001.00141.x
  13. Das, B. C., D. N. Prasad and S. Krishnaswami (1970). Studies on anthesis in mulberry. Indian J. Sericul. 9, 59-63
  14. Domeniuk V. P., T. G. Verbitskaia, A. A. Belousov and I. M. Sivolap (2002) Marker analysis of quantitative traits in maize by ISSR-PCR. Genetika 38, 1370-1378
  15. Dwivedi, N. K., N. Suryanarayana, B. N. Susheelamma, A. K. Sikdar and M. S. Jolly (1989) Interspecific hybridization in mulberry. Sericologia 29, 147-149
  16. Fang, D. Q. and M. L. Roose (1997) Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor. Appl. Genet. 95, 408-417 https://doi.org/10.1007/s001220050577
  17. Flandez-Galvez, H., R. Ford, E. C. K. Pang and P. W. J. Taylor. (2003) An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence tagged microsatellite site and resistance gene analog markers. Theor. Appl. Genet. 106, 1447-1456
  18. Gupta, M., Y.-S. Chyi, J. Romero-Severson and J. L. Owen (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet. 89, 998-1006
  19. Gururajan, M. K. (1960) Varieties of mulbeny-a classification, Indian Silk 1, 12-15
  20. Hashizume, T., I. Shimamoto and M. Hirai. (2003) Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (THUNB.) MATSUM & NAKAI] using RAPD, RFLP and ISSR markers. Theor. Appl. Genet. 106, 779-785.
  21. Hirano, H. (1977) Evaluation of affinities in mulberry and its relatives by peroxidase isozyme technique. JARQ 11, 228-233
  22. Hirano, H. (1982). Varietal differences of leaf protein profiles in mulberry. Phytochemistry 21, 1513-1518
  23. Hussain, A. J., Y. Gupta, J. Ali, P. K. Ranjekar and E. A. Siddiq (2000) Physiological characterization, genetics and molecular mapping of a new source of temperature sensitive genetic male sterility in rice. Fourth International Rice Genetics Symposium, 22-27 October 2000, IRRI, Philippines, Abstracts p. 95
  24. Hwang, J. S., J. S. Lee, T. W. Goo, E. Y. Yun, H. R. Sohn, H. R. Kim and O. Y. Kwon (1999) Molecular genetic relationship between Bombycidae and Satumiidae based on the mitochondrial DNA encoding of large and small rRNA. Genet Anal. 15, 223-228 https://doi.org/10.1016/S1050-3862(99)00008-X
  25. Joshi, S. P., Y. S. Gupta, R. K. Aggarwal, P. K. Ranjekar and D. S. Brar (2000) Genetic diversity and phylogenetic relationship as revealed by inter-simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theor. Appl. Genet. 100, 1311-1320 https://doi.org/10.1007/s001220051440
  26. Koidzumi, G. (1917) Taxonomical discussion on Morus plants. Bull. Im. Sericult. Exp. Stat, 3, 1-62
  27. Kojima, T., T. Nagaoka, K. Noda and Y. Ogihara (1998) Genetic linkage map of lSSR and RAPD markers in Einkorn wheat in relation to that of RFLP markers. Theor. Appl. Genet. 96, 37-45 https://doi.org/10.1007/s001220050706
  28. Levin, I., N. Gilboa, E. YeseIson, S. Shenand A. A. Schaffer (2000) Fxr, a major locus that modulates the fructose to glucose ratio in mature tomato fruits. Theor. Appl. Genet. 100, 256-262 https://doi.org/10.1007/s001220050034
  29. Lichun, F., Y. Guangwei, Y. Maode, K. Yifu, J. Chenjun and Y. Zhonghuai (1996) Studies on the genetic identities and relationships of mulberry cultivated species (Morus L.) via a random amplified polymorphic DNA assay. Canye Kexue 22, 139
  30. Lou, C. F., Y. Z. Zhang and J. M. Zhou (1998) Polymorphisms of genomic DNA in parents and their resulting hybrids in mulberry Morνs. Sericologia 38, 437-445
  31. Meyer, W., T. G. Mitchell, E. Z. Freedman and R. Vilgays (1993) Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. J. Clin. Microbiol 31, 2274-2280
  32. Moreno, S., J. P. Martin and J. M. Ortiz (1998) Inter-simple sequence repeats PCR for characterization of closely related grapevine germplasm. Euphytica 101, 117-125 https://doi.org/10.1023/A:1018379805873
  33. Nagaoka, T. and Y. Ogihara (1997) Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Apppl. Genet. 94, 597-602 https://doi.org/10.1007/s001220050456
  34. Palmer, J. D. and L. A. Herbon (1988) Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evol. 28, 87-97 https://doi.org/10.1007/BF02143500
  35. Pasakinskiene, I., C. M. Griffiths, A. J. E. Settany, Y. Paplauskiene and M. W. Humphreys (2000) Anchored simple-sequence repeats as primers to generate species-specific DNA markers in Lolium and Festuca grasses. Theor. Appl. Genet. 100, 384-390 https://doi.org/10.1007/s001220050050
  36. Prevost, A. and M. J. Wilkinson (1999) A new system of comparing PCR primers applied to lSSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98, 107-112 https://doi.org/10.1007/s001220051046
  37. Provan, J., W. Powell and P. M. Hollingsworth (2001) Chloroplast microsatellites : new tools for studies in plant ecology and evolution. Trends Ecol. Evol. 16, 142-147 https://doi.org/10.1016/S0169-5347(00)02097-8
  38. Ratnaparkhe, M. S., M. Tekeoglu and F. J. Muehlbauer (1998) Inter simple- sequence-repeat (ISSR) polymorphisms are useful for finding markers associated with disease resistance gene clusters. Theor. Appl. Genet. 97, 515-519 https://doi.org/10.1007/s001220050925
  39. Ravindran, S., V. A. Rao, V. G. Naik, A. Tikader, P. Mukheerjee and K. Thangavelu (1997) Distribution and variations in mulberry germplasm. Indian J. Plant Genet. Resour. 10, 233-242
  40. Reddy, P. M., N. Sarla and E. A. Siddiq (2002) Inter simple sequence repeat (ISSR) polymophism and its application in plant breeding. Euphytica 128, 9-7
  41. Salimath, S. S., A. E. de Oliveira, J. D. Godwin and J. L. Bennetzen (1995) Assessment of genome origins and genetic dicersity in the genus Eleusine with DNA markers. Genome 38, 757-763 https://doi.org/10.1139/g95-096
  42. Sankar, A. A. and G. A. Moore (2001) Evaluation of inter-simpIe sequence repeat analysis for mapping in Citms and extension of genetic linkage map. Theor. Appl. Genet. 102, 206-214 https://doi.org/10.1007/s001220051637
  43. Srivastava, P. P., K. Vijayan, A. K. Awasthi and B. Saratchandra (2004). Genetic analysis of Morus alba through RAPD and ISSR markers. Indian J. Biotechnology 3, 527-532
  44. Tikader, A. and S. B. Dandin (2001) Breeding behaviour of some wild mulberry. Indian Silk 40, 9-10
  45. Tikader, A. and A. A. Rao (2002) Intra and Interspecific hybridisation in mulberry. Bullet. Indian Acad. Sericult. 6, 17-22
  46. Tsumura, Y., K. Ohba and S. H. Strauss, (1996) Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglasfir (Pseudotsuga menziesii)and sugi (Cryptomeriajaponica). Theor. Appl. Genet. 92, 40-45 https://doi.org/10.1007/BF00222949
  47. Vijayan, K. and S. N. Chatterjee (2003). ISSR profiling of Indian cultivars of mulberry (Morus spp.) and its relevance to breeding programs. Euphytica 131, 53-63 https://doi.org/10.1023/A:1023098908110
  48. Vijayan, K. (2004) Genetic relationships of Japanese and Indian mulberry (Morus spp.) revealed by DNA fingerprinting. Plant Systematics Evol. 243, 221-232 https://doi.org/10.1007/s00606-003-0078-y
  49. Vijayan, K., P. K. Kar, A. Tikader, P. P. Srivastava, A. K. Awasthi, K. Thangavelu and B. Saratchandra (2004a) Molecular evaluation of genetic variability in wild populations of mulberry (Morus serrata Roxb.). Plant Breeding 123, 568-572 https://doi.org/10.1111/j.1439-0523.2004.01035.x
  50. Vijayan, K., A. K. Awasthi, P. P. Srivastava and B. Saratchandra (2004b). Genetic analysis of Indian mulberry varieties through molecular markers. Hereditas 141, 8-14 https://doi.org/10.1111/j.1601-5223.2004.01813.x
  51. Vijayan, K., P. P. Srivastava and A. K. Awasthi. (2004c) Analysis of phylogenetic relationship among five mulberry (Morus) species using molecular markers. Genome 47, 439-448 https://doi.org/10.1139/g03-147
  52. Vijayan, K. S., N. ChatterJee and C. V. Nair (2005a) Molecular characterization of mulberry genetic resources indigenous to India, Gene. Resour. Crop Evol. (In press)
  53. Vijayan, K., A. Tikader, P. K. Kar, P. P. Srivastava, A. K. Awasthi, K. Thangavelu and B. Saratchandra (2005b) Assessment of genetic relationships between wild and cultivated mulberry (Morus) species using PCR based markers Genet. Resour. Crop Evol. (In press)
  54. Virk, P. S., I. Zhu, H. J. Newbury, G. J. Bryan, M. T. Jackson and B. Y. Ford- Lloyd, (2000) Effectiveness of different classes of molecular marker for classifying and revealing variation in rice (Oryza sativa) germplasm. Euphytica 112, 275-284
  55. Wang, G., R. Mahalingam and H. T. Knap (1998) (C-A) and (GA) anchored simple sequence repeats (ASSRs) generated polymorphism in soybean, Glycinc max (L.) Merr. Theor. Appl. Genet. 96, 1086-1096 https://doi.org/10.1007/s001220050843
  56. Wolfe, K. H, W. H. Li and P. M. Sharp (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc. Natl. Acad. Sci. USA 84, 9054-9058 https://doi.org/10.1073/pnas.84.24.9054
  57. Wolfe, A. D., Q-Y. Xiang and S. R. Kepharr (1998) Diploid hybrid speciation in Penstemon (Scrophulariaceae). Proc. Natl. Acad. Sci. USA 95, 5112-5115 https://doi.org/10.1073/pnas.95.9.5112
  58. Wolff, K. and M. Morgan-Richards (1998) PCR markers distinguish Plantago major subspecies. Theor. Appl. Genet. 96, 282-286 https://doi.org/10.1007/s001220050737
  59. Wu, K., R. Jones, L. Dannaeberger and P. A. Scolnik (1994) Detection of microsatellite polymorphisms without cloning. Nucleic. Acids. Res. 22, 3257-3258 https://doi.org/10.1093/nar/22.15.3257
  60. Zhang, Y., L. Chengfu, Z. Jinmei, Z. Hongzi and X. Xiaoming (1998) Polymorphism studies on genomic DNA of diploids and polyploids in mulberry. J. Zhejiang Agricul. Univ. 24, 79-81
  61. Zietkiewicz, E., A. Rafalski and D. Labuda (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176-183 https://doi.org/10.1006/geno.1994.1151