DOI QR코드

DOI QR Code

Size Control of Nickel Powders from Nickel Chloride Solution Containing Ammonia in DEA Solutions

DEA 용액에서 암모니아를 함유한 염화니켈 수용액으로부터 니켈 분말의 입경 제어

  • Choi Eun Young (School of Materials Science and Engineering, Busan National University) ;
  • Lee Yoon Bok (Research Center for Dielectric and Advanced Matter Physics, Busan National University) ;
  • Yoon Suk Young (School of Materials Science and Engineering, Busan National University) ;
  • Kim Kwang Ho (School of Materials Science and Engineering, Busan National University) ;
  • Kim Jin Chun (Materials Research Station, Korea Institute of Machinery and Materials) ;
  • Rhyim Young Mok (Materials Research Station, Korea Institute of Machinery and Materials) ;
  • Kim Hyong Kuk (Research Center for Dielectric and Advanced Matter Physics, Busan National University) ;
  • Kim Yang Do (School of Materials Science and Engineering, Busan National University)
  • 최은영 (부산대학교 재료공학부) ;
  • 이윤복 (부산대학교 유전체 물성연구소) ;
  • 윤석영 (부산대학교 재료공학부) ;
  • 김광호 (부산대학교 재료공학부) ;
  • 김진천 (한국기계연구원 재료기술연구소) ;
  • 임영목 (한국기계연구원 재료기술연구소) ;
  • 김형국 (부산대학교 유전체 물성연구소) ;
  • 김양도 (부산대학교 재료공학부)
  • Published : 2005.06.01

Abstract

Nickel powders were synthesized by the hydrazine reduction of nickel chloride solution containing ammonia in DEA solutions. The size distribution of nickel powders were investigated as a function of ammonia concentration, hydrazine concentration and the mixed composition ratio of diethanolammine (DEA) and triethanolammine (TEA). Nickel powders with the size in submicron range were obtained at $185^{\circ}C$ for 45 minutes by hydrazine reduction of nickel chloride solution in DEA solutions. The hydrazine concentrations showed significant effects on the particle size and shape distribution of nickel powders under $NH_3/Ni^{2+}$ molar ratio of 2.0 condition. As the mixed volume ratio of TEA and DEA increased, nickel powders with relatively larger particle size and low agglomeration were obtained. Nickel powders with particle size in the ranged from 0.4 to $0.9\;{\mu}m$ were obtained at the 50 $vol.%$ of TEA.

Keywords

References

  1. Y. Shen. Z. Zhang, B. Zhao, Y. Zhu and L. Hu: FCAM, (1995) 663
  2. Y. D. Li, C. W. Li, H. R. Wang, L. Q. Li and Y. T. Qian: Mat. Chem., 59 (1999) 88 https://doi.org/10.1016/S0254-0584(99)00015-2
  3. K. Watara, A. Takeshi and T. Hideo: JP Patent 11236605 (1999)
  4. S. Stopic, J. Nedlkovic, Z. Rakocevic and D. Uskokovic: J. Mater. Res., 14 (1999) 3059 https://doi.org/10.1557/JMR.1999.0410
  5. F. Fievet, J. P. Lagier and B. Blin: Solid State Ionics, 32 (1989) 198 https://doi.org/10.1016/0167-2738(89)90222-1
  6. C. D. Sanguesa, R. H. Urbina and M. Figlarz: Solid State Ionics, 63 (1993) 25 https://doi.org/10.1016/0167-2738(93)90081-D
  7. F. Flevet. F. F. Vincent, J. P. Larglier, B. Dumont and M. Figlarz: J. Mater. Chem., 3 (1993) 627 https://doi.org/10.1039/jm9930300627
  8. P. Y. Silvert, R. H. Urbina and K. T. Elhsissen: J. Mater. Chem., 7 (1997) 293 https://doi.org/10.1039/a605347e
  9. A. Degan and L. Macek: NanoStruct. Mater., 12 (1999) 225 https://doi.org/10.1016/S0965-9773(99)00104-X
  10. K. T. Elhesissen, F. Bonet, S. Grugeon, S. Lambert, and R. H. Urbina : J. Mater. Res., 14 (1999) 3707 https://doi.org/10.1557/JMR.1999.0500
  11. Y. T. Yu and Y. Y. Choi: Kor. J. Mater. Res., 13 (2003) 524 https://doi.org/10.3740/MRSK.2003.13.8.524
  12. T. Kobayashi: J. Col. Mater. lpn., 75 (2002) 66