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Adaptive Controller Design for a Synchronous Generator with Unknown
Perturbation in Mechanical Power

Xiaohong Jiao, Yuanzhang Sun, and Tielong Shen

Abstract: Transient stabilization with voltage regulation is investigated for a synchronous
generator when the mechanical power is perturbed to any unknown value within its physical
bounds so that the operating point of the system shifts to an unknown point. An adaptive
excitation controller is designed based on the backstepping method with tuning functions. It
will be shown that the adaptive control law proposed can achieve the convergence of the
system states to the new equilibrium point in correspondence with the real value of the
unknown mechanical power and the regulation of the terminal voltage to the required value.
Simulation results are given to demonstrate the effectiveness of the proposed controller for the

transient stabilization and voltage regulation.

Keywords: Adaptive control, mechanical power, synchronous generator, transient stabilization,

voltage regulation.

1. INTRODUCTION

Transient stability of power systems is a classical
dynamic control systems problem. The application of
nonlinear control methods to design the excitation
control in order to enhance transient stability has been
given much attention throughout various literatures
since the late 1980s. Since the uncertainty in practical
power systems, represented by sudden mechanical
(load shedding and generation tripping) and electrical
(short circuits with changes in the power network
structure) perturbations, may destabilize the operating
conditions, the research of robustness issues is more
challenging and widely applicable. Therefore, the
transient stabilization problem consists in the design
of an excitation feedback control for the power
systems that will keep the generator at synchronous
speed and the terminal voltage at the prescribed value
when perturbation occurs.

In the last decade, nonlinear control theory has been
exploited to solve the transient stabilization problem.
Feedback linearization based excitation schemes have
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been proposed by [1-3]. Adaptive versions of the
feedback linearizing controls are then developed in
[4,5]. Robust nonlinear state feedback controls have
also been investigated in [6,7]. In [8,9], robust
adaptive nonlinear excitation controls with L,
disturbance attenuation are developed for power
systems with additive disturbances and unknown
electrical parameters. Very recently, the adaptive
control problem has been addressed in [10] for power
systems involving unknown mechanical power. When
the mechanical power is perturbed to a new constant
value, the equilibrium of the system will shift to a new
corresponding point, moreover, the new point will be
unknown if the mechanical power is unknown. In [10]
an estimation function is introduced for the unknown
mechanical power and the angular speed, and with the
estimation, the trajectories for the angle, the angular
speed and the active power are given such that the
excitation control drives the states of the system to
track the trajectories and the trajectories to converge
to the equilibrium point.

In this paper, we consider the transient stabilization
with voltage regulation problem for synchronous
generators with unknown perturbation in the
mechanical power. Motivated by [10], we also
introduce an estimation function in the proposed state
feedback excitation control law. However, we will
show that with some tuning functions, such a
feedback controller can be directly constructed so that
the system is stabilized at the new equilibrium
corresponding to the unknown mechanical power. The
remaining portion of the paper is organized as follows
The problem is formulated in Section 2. In Section 3,
based on the adaptive back-stepping design technique
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an adaptive state feedback controller achieving the
transient stabilization and voltage regulation is
designed. Simulation results will be given in Section 4
to support the theoretical claims. Concluding remarks
follow in the final Section.

2. PROBLEM FORMULATION
We consider the classical third order dynamic

model of a synchronous generator connected to an
infinity-bus, which is given as follows [11]:

S=w-o,
o=-Lw- a))+—{P ~P(t)}
- H )
. X
E =—1— X‘JZE Xa - chosé'+uf
Tyo | Xys Xz

where P,(t) is the active power, here

V,E, v:X,-X,
P()="ging Lo 024
gz 2 XXas

sin2o .

S8(t) denotes the rotor angle, E "] (t) is the ¢ -axis
transient potential, and ¥, is the voltage at the infinite
bus. w(¢) is the angular speed of the generator
is the
mechanical power. D is the damping constant, H is
the inertia constant. Xy = Xz + X7 + X is the total

and @, is the synchronous rotating speed. F,

reactance that takes into account X, , the generator
direct axis reactance, X , the reactance of the

transformer and X ,the transmission line reactance.

X ;12 =X 'd + Xy +X; with X, ;i denotes the generator
direct axis transient reactance. X,y =X, + Xy + X,
with X, denotes the generator ¢ -axis transient
reactance. Ty, is time constant of the field winding.
uy is the control input of the SCR amplifier of the

generator.

Suppose that the mechanical power £,
Then, it is well known that for given nominal values
of the angle &, the angular speed @, and the tran-

sient potential E ., if we set the excitation control

gs>
uf as
Xz o Xg—X,
up = az Eg — d_"dy cosd,.
Xas Xus
o, and E,;S should satisfy

is constant.

Then the closed loop system is asymptotically stable
at the point of equilibrium '

=g,

5=34,, E,=E, )

where o, €(0,Z) .

terminal voltage will be regulated at ¥V, , which is

Correspondingly, the generator

determined by the following well known relation [11]

. xip2 xiy? L 2X X P
' vZsin?6  Xis Xas

1

2
té} 3

with the stable equilibrium and X = X7 + X .
for system (1) there exists another
E,,) withsing, =sind, ,

However,
unstable equilibrium (5, ,®

which may be close to the stable one. This fact
signifies that the stable equilibrium may have a very
small stability region so that a disturbance, for
instance the perturbation in the mechanical power F,, ,

may drive the generator to be unstable or prompt loss
of synchronousness and inability to achieve voltage
regulation. Therefore, under unknown mechanical
power, the design problem of the adaptive controller,
which stabilizes the generator at an appropriate
equilibrium corresponding to the mechanical power
and guarantees terminal voltage to be regulated to its
prescribed value V., is an important issue in the

power system.
The design problem considered in this paper is as

follows. Suppose the mechanical power B, is an
unknown constant, and let the corresponding
unknown equilibrium be (J; wS,E;S). Find an
adaptive state feedback controller of the form
{u; =a(6,0,E, ,,PmA) @
|\ P, =p(6,0,E,.P,)

such that the resulting closed-loop system is stable at

the unknown equilibrium and 6 — 9, ,
E, > E,

-, ,

as t— oo, where P, is the estimate of

P, . Furthermore, the terminal voltage V; is regulated

to the prescribed value V...

3. CONTROLLER DESIGN

For the sake of simplicity, we define the state

variable by x =6 , x=0-0,, x3=Eq ithe
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control law u=u, and the unknown equilibrium

(55‘ ’ qs) (xle’o x3e)

the system can be represented by the following state
space model:

, then the dynamics of

)'Cl =Xy
Xy =—a1Xy + @ By, —azxysinx +aysin2x; (5)

X3 = —CX3 + €y COS X + C3,

where the parameters are defined by

D % v:X,-X,
a1=—, a2 :&’ a3= a)s VS ) a4:a)s S q 'd’
H H HX s 2H X X4
1 X 1 X, -X 1
Cl———ﬁ, = d T st, C3 =
Tho Xy Tao P 0

In the following, we will seek a solution to the
design problem by recursively constructing a
Lyapunov function.

In order to achieve the voltage regulation
performance, o, with the real value of the mechanical

power P, ,and the set point V. must satisfy (3), i.e.

Py
;ﬁ; —bzﬂ/sz—? , ©)

X, = arccoty —

XV,

S

V,
where b =-—-andb, =
X s dx
Motivated by this equation, we can use the

following estimation for the equilibrium point &,

corresponding the estimate f’m :

P2
X, = arccot 131 by + V2 = | @)
By V" oh

Clearly, %, — x, whenP, — P,

We start the recursive design process with this
estimation. First, we define a positive definite
function

Wi(x) = _xl (8)
with X =x —%;,. The time derivative of W, along

the trajectory of subsystem x; is obtained

. N L Ox, A
Wi(x) = 5% — % —&P,,. 9)

. 0P,
Define X, = x, — (%) and choose the virtual control

law a(x) as

(%) = —(x — X,) (10
then, we obtain the following equality

aA A
Wi(x) = =32 + %%, - % e p (11)

m

Let z3:=a3x3sinx; —a,sin2x; and consider the
subsystem (x;,x,)
X =X
. (12)
Xy =—axy tar b, — 23

From here, we construct a positive definite function
- - 1.2
W2 (3, %) = () + 2% (13)

Then, we can obtain the time derivative of W, as:

. toles
=z ~ 1
Wz = X9 4 —adiXp +a2Pm —Z3 +x1 X3
axl
- ox
" leP —X,

3 oa, 0x,, * b
oP, 2 0% P,

e (14)

Define

virtualcontrol law o, () as

Zy =23 —a,(%,x,,F,) and choose the

~ 00(1 ~ ~
)y =—aqpxy + X ——ar Xy + X9 +a‘2Pm —Vi»
V1

where  v,(%,%,B,) is a smooth function
determinedlater, so that the time derivative of W,

satisfies

Wy = -3 — 33 — %23 + %pay(P, — P,)

~ Oa, OX ox
+x2(v1 | xleP ] xleP

6P

= m (16)
ox X1e (3P

For the whole system constructing the positive de-
finite function

I/V:i(xl’XZ’Z?:):Wz(‘xl"x2)+EZ§’ (17)

we have the time derivative of W; along the

trajectories of (5)
Wy = 23{~F%, + a3 (—¢,x3 + ¢y cOS X; + cu)sin x; }

- ooy
+Z3 a3x3x2 COS xl - 2a4x2 COS 2x1 - —X2
axl
. Oa . .
—Z3 8—2(—a1x2 +a, P, —azxysinx; +aysin2x;)
X2
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ox,, A A
5 0% Slep 38‘1‘2-Pm+x2a2(Pm—Pm) (18)
axle 5P

oP,
~ Oa, 0%, A
+x2(V1—aAi )ile Pm

xle 8Pm

The control law chosen as
1 -
U =————{X% —a3x3%, COS X] + 2a,X%, cos2x;
a3c3 sin X1
60{2 ~ . .
+—=(—ayx; +ay P, ~ azx3sinx; + aysin2x;) (19)
aX2
66{2 - 1
+—=x +Vy —Z3} +—(c1x3 — ¢y cOS X)),
6xl . C3
" vy (%, %y,x3,P,) is a smooth function
determined later, renders

o n 2 a2~ O0a, 0%y, » | ~ OX}, A
Wy=—%"~X; -2 +%,| v, —aA—l xAle P, |-X,—<P,
X1e OP,, oP

m

_53{ Oa, 0%, aazém} o)

where

v
P4 0P, " P
o j
H-H2 (B, -F,).
( o
Furthermore, we choose a positive definite function
- o~ o~ A - o~ o~ V ~n
V(xl’x2'23ﬁpm):VV3(x1’x2’Z3)+5Pm’ (21)
where P, =P, ~P,, and r is a given positive

constant. Then, we calculate the time derivative of V
as follows:

s 2 =2 2 = OX Ao oa, 0%, A
V=X %) 27 =X —2 P 4%, | v~ 2P
oP, 0

m
m

v, Oa, 0%, A Pm aazl'Jm 22)
%y, oP, oP,

- _ O A
+ m{xZaZ _235;2“—2_‘]2 _rpm}-

Let
A1) . Oy
P, == -5"2a,y, 23
m F{XQ‘JQ 3 2} (23)
1 %, . 1 Oa dx =
Vi ==y — X +— “X,, (24)
s, e, b,

1|0a, 0%, Oa, { oa, }
N+ X0, —Z3 dy
axle 6Pm aPm axZ (25)

10a, ox,, 0, . 10%,0c, .
2 rop. ox 2%
)y X2

ro%, op ox,

we obtain the following equality

V=-3i -3 -5 (26)

With this equality, we can reach the following
conclusion:

Proposition 1: For system (5), if the state feedback
controller is chosen as (19) and the parameter
adaptation law as (23)~(25), then for any constant
mechanical power P, that guarantees the existence

of the operating point x,(xi, <Z), the closed loop

| system is locally Lyapunov stable at the point of

and 13 - P,
X3 —>x3,, V,>V,.,a to>w.

equilibrium, X=X, X =0,

e

Proof: For the closed loop system coordinated by

(%1,%2,23, 6
satisfies the equality (26) ensures stability at the
origin. Furthermore, with the equality, we can con-
clude from Barbalat's Lemma that X, >0, X, >0

the Lyapunov function V that

and zZ3 >0 ast—>w , ie. x—>x,, x>0 and

—day Sinle —)az(0,0,ﬁm) as t— oo,

To complete the proof, we will show that

Z3 = a3X3 Sin xl

(%,,,0,%5,,P,) will converge to the unknown
equilibrium (xy,,0,x3,,F,) . Since x, =%, + (X))

=0 attheorigin X, =0, ¥, =0, we obtain from the

defini-tion of Z; that z; — a,(0,0,2,). Note that

the tuning function v1(0,0,15m)=0. Therefore, we

have from (15) that

Z,=04%,8INX;—a,sin2x,
—a,X,,81NX,,—a,sin2x,, >a, P, .

Alternatively, from the second equation of the
dynamics of the generator,

0=a, P,~a;x,,sinx,,+a,sinx,, .

This means f’m — B, , as t—oo . Consequently,

X, = X,, X3 =>X3,, as {—>oo. Furthermore, from
(6), it follows V; > V.. 0

Remark 1: It should be noted that in both [10] and
this paper, the convergence to the new equilibrium
point corresponding the real value of the unknown
mechanical power is achieved by introducing the
estimation function. However, in [10] the estimations
for both the mechanical power and the angular speed
are required to construct the trajectories tracked by the
states of the system. In this paper, the mechanical
power is estimated to design the adaptive stabilizing
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controller with the help of the tuning functions
allowing the design algorithm to be simple. Moreover,
the proof of the result is given by analyzing directly
the physical character of the system.

4. SIMULATION

The physical parameters of the power system
employed for the simulation are given as follows:
oy =lpu., D=01pu, H="Ts, V; =0.995pu., Ty, =8s,
Xy =18pu, X;, =03pu., X, =1T6pu,
X7 =0.15pu., X; =0.3252pu.
and X, X5, Xy5, X,
Xy =Xy +X;=07752, X 5 = X, + X, =22352.

Moreover, according to the definition in Section 3, the
values of the parameters in model (5) are obtained as
follows:

a; =0.0143, a, =0.1429, a; =0.1834, a, =0.0596,
¢, =0.3685, ¢, =0.2423, ¢, =0.1250

and when the mechanical power F, =0.9 and the

s can be calculated as

excitation control input signal is a constant
ug =2.2097, the system has a stable equilibrium at

x, =(1.1999,0,0.9879) and the terminal voltage of
the generator V, is prescribed as V. =1.0475.

Now, we consider the following two cases in which
there exists the unknown perturbation in the
mechanical power: :

(a) Unknown disturbance occurs to the mechanical
power when the synchronous generator is operating at
stable equilibrium, and after several occurrences the
mechanical power is recovered, i.e.

0.9 0<t<4.0[sec]
B, =<09+AP, 4.0<t<52[sec]
0.9 52«1t

(b) Sudden turbine failure happens and the fault is
not recovered so that the mechanical power abruptly
changes to an unknown value, i.e.

P - 0.9 0<1<4.0[sec]
" 109+AP, 40<t

The adaptive controller is designed as shown in
(19) and (23)~(25) for the transient stabilization with
voltage regulation of the generator.

We first give the simulation research for case (a).
When the system (5) is not forced by any feedback
excitation control law but only the constant u g, the

response of the system under case (a) (in simulation
AP, =0.3) is shown in Fig. 1. It can be seen that the

equilibrium can be recovered and the terminal voltage
can be regulated to the prescribed value, however, the
recovering time is 56s. When the system is forced by
the proposed adaptive control law (19) with (23)~(25),
the response of the closed loop system is presented in
Fig. 2, where the control parameter » is chosen as
r=0.15. It follows from the results of Fig. 2 that the
adaptive controller guarantees the system to recover
quickly the operating equilibrium and the prescribed
value of the terminal voltage (the recovering time is 15s).

engle speed o — 0, [pu]

i1

i N :
L N W m P @ @ @ 8 m

transient putential E.’ [pu tertod vatage ¥y [pa)

088 by 0
{48
084 }-

082 -

64

] a 4 1] a 1] e n L] 2] i i

Fig. 1. The response of the system without feedback
control under case (a).

8—solidand x) — dash (rad}

zvge speed @ - w4 [pa)

o 1] A kil L] 1] [ A kil L]

estimate of Bm [pu)

] [ ] i [ ] [ ] a 41

contral bawu [pas} termingt vohage V¢ [pa} o

1054

152

1048

[ T RS R A

18 ; :
B ) ' W o Mg 0 x o r

Fig. 2. The response of the system with feedback
control under case (a).



Adaptive Controller Design for a Synchronous Generator with Unknown Perturbation in Mechanical Power 313

angles {ead] wigle speed © - 04 (pu)
S0 * 1]
400 : : : : 8
amg b ............ [} R, R o R
9 : . 0 :
1] a L} i} it i n 48 0 & i}

Fig. 3. The response of the system without feedback
control under case (b).
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Fig. 4. The response of the system with feedback
control under case (b).

Now, we consider case (b), i.e. the mechanical
power is varied from the normal value 0.9 to some
unknown constant (in the simulation it is chosen as
1.2). The response of system (5) with the constant in-

put ug is shown in Fig. 4. It is seen that the system

is unstable. However, from the simulation result given
by Fig. 4, it is indicated that the proposed adaptive
control law can render the closed loop system to
converge quickly to a new equilibrium point
corresponding the real value of the unknown
mechanical power and the terminal voltage can be
regulated to the prescribed value quickly.

5. CONCLUSIONS

In this paper, we investigated the transient
stabilization with the voltage regulation for the
synchronous generator when the mechanical power is

perturbed to an unknown constant value so that the
operating point of the system is also unknown. We
designed a nonlinear adaptive excitation controller by
way of backstepping method with tuning functions. It
was shown that the presented excitation controller can
drive the system to a stable equilibrium corresponding
to the real value of the unknown mechanical power,
and simultaneously achieve good regulation of the
generator terminal voltage.
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