References
- W. Stach, ' Advanced Mixed Oxide Fuel Assemblies with Higher Plutonium Content for Light Water Reactors,' IAEA-SM-358, International Symposium on MOX Fuel Cycle Technologies for Medium and Long-Term Deployment, Vienna (Austria) 17-21 May (1999)
-
E. Zimmer, C. Ganguly, J. Borchardt, and H. Langen, ' SGMP - an Advanced Method for Fabrication of
$UO_{2}$ and MOX Fuel Pellets,' J. Nucl. Mater., 152 [2-3] 169-77 (1988) https://doi.org/10.1016/0022-3115(88)90323-6 - R. Guldner and H. Schmidt, ' Optimization of Process Parameters for the Sintering of MOX Fuel,' J. Nucl. Mater., 178 [2-3] 152-57 (1991) https://doi.org/10.1016/0022-3115(91)90380-P
- G. S. Chang and J. M. Ryskamp, ' Depletion Analysis of Mixed-Oxide Fuel Pins in Light Water Reactors and the Test Reactor,' Nucl. Tech., 129 [3] 326-37 (2000) https://doi.org/10.13182/NT00-A3065
- E. J. Lahoda, ' Costs for Manufacturing Thorium-Uranium Dioxide Fuels for Light Water Reactors,' Nucl. Tech., 147 [1] 102-12 (2004) https://doi.org/10.13182/NT04-A3517
- Y. W. Lee, et al., ' Development of Fabrication Technology for Advanced Nuclear Fuel for the Future,' Korea Atomic Energy Research Institute, KAERI/PR-1371/93 (1993)
- R. E. Woodley, ' Oxygen Potentials of Plutonia and Uraniaplutonia Solid Solutions,' J. Nucl. Mater., 96 [1-2] 5-14 (1981) https://doi.org/10.1016/0022-3115(81)90212-9
-
D. I. R. Norris and P. Kay, ' Oxygen Potential and Lattice Parameter Measurements in (U, Ce)
$O_{2-x}$ ,' J. Nucl. Mater., 116 [2-3] 184-94 (1983) https://doi.org/10.1016/0022-3115(83)90101-0 - H. P. Nawada, et al., ' Oxidation and Phase Behaviour Studies of the U-Ce-O System,' J. Nucl. Mater., 139 [1] 19-26 (1986) https://doi.org/10.1016/0022-3115(86)90159-5
-
M. Beauvy, ' Nonideality of the Solid Solution in (U,PU)
$O_{2}$ Nuclear Fuels,' J. Nucl. Mater., 188 232-38 (1992) https://doi.org/10.1016/0022-3115(92)90477-3 - O. T. Sorensen, ' Thermodynamic Studies of the Phase Relationships of Nonstoichiometric Cerium Oxides at Higher Temperatures,' J. Solid State Chem., 18 [3] 217-33 (1976) https://doi.org/10.1016/0022-4596(76)90099-2
-
D. J. Kim, S. H. Na, Y. K. Kim, Y. W. Lee, and Y. S. Kim, ' Effect of the
$UO_{2}$ Powder Characteristic Changes by Dynamic Milling on the Density(in Korean),' J. Kor. Ceram. Soc., 41 [8]588-92 (2004) https://doi.org/10.4191/KCERS.2004.41.8.588 - ASTM Designation, ' Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis,' E831-03
- J. Belle, ' Uranium Dioxide: Properties and Nuclear Applications,' Naval Reactors, Division of Reactor Development, United States Atomic Energy Commission, 1961
- T. Fujino, ' Thermodynamics of Fluorite Type Solid Solutions Containing Plutonium, Lanthanide Elements or Alka-line Earth Metals in Uranium Dioxide Host Lattices,' J. Nucl. Mater., 154 14-24 (1988) https://doi.org/10.1016/0022-3115(88)90114-6
-
K. Yamada, S. Yamanaka, T. Nakagawa, M. Uno, and M. Katsura, 'Study of the Thermodynamic Properties of (U, Ce)
$O_{2}$ ,' J. Nucl. Mater., 247 289-92 (1997) https://doi.org/10.1016/S0022-3115(97)00076-7 - K. Nagarajan, et al., 'Oxygen Potential Studies on Hypostoichiometric Uranium-Cerium Mixed Oxide,' J. Nucl. Mater., 130 242-49 (1985) https://doi.org/10.1016/0022-3115(85)90313-7
-
C. K. Lee, B. H. Lee, and S. K. Chun, ' Study on Thermal Expansion of
$SiO_{2}$ -$Al_{2}O_{3}$ System(in Korean),' J. Kor. Ceram. Soc., 17 [3]141-44 (1980) - T. K. Kang and K. L. Weisskopf, ' Thermal Expansion Behavior of Cordierite-SiC Whisker Ceramic Composites(in Korean),' J. Kor. Ceram. Soc., 24 [5] 411-16 (1987)
- B. S. Kim, D. Y. Lee, H. K. Kim, and J. W. Jang, ' The Decision on the Thermal Expansion Coefficient of the Glass Infiltrated in all Ceramic Crown(in Korean),' J. Kor. Ceram. Soc., 40 [1] 93-7 (2003) https://doi.org/10.4191/KCERS.2003.40.1.093
- J. K. Fink, Thermal Expansion of Solid Uranium Dioxide; http://www.insc.anl.gov/matprop/, MATPRO (1999)