Positive Real Control for Uncertain 2-D Singular Roesser Models

  • Xu Huiling (Department of Applied Mathematics, Nanjing University of Science and Technology) ;
  • Xie Lihua (School of Electrical and Electronic Engineering, Nanyang Technological University) ;
  • Xu Shenyuan (Department of Automation, Nanjing University of Science and Technology) ;
  • Zou Yun (Department of Automation, Nanjing University of Science and Technology)
  • Published : 2005.06.01

Abstract

This paper discusses the problem of positive real control for uncertain 2-D linear discrete time singular Roesser models (2-D SRM) with time-invariant norm-bounded parameter uncertainty. The purpose of this study is to design a state feedback controller such that the resulting closed-loop system is acceptable, jump modes free and stable, and achieves the extended strictly positive realness for all admissible uncertainties. A version of positive real lemma for the 2-D SRM is given in terms of linear matrix inequalities (LMIs). Based on the lemma, a sufficient condition for the solvability of the positive real control problem is derived in terms of bilinear matrix inequalities (BMIs) and an iterative procedure for solving the BMIs is proposed.

Keywords

References

  1. T. Kaczorek, 'The singular general model of 2-D systems and its solutions,' IEEE Trans. on Automatic Control, vol. 33, no. 11, pp. 1060- 1061, 1988 https://doi.org/10.1109/9.14418
  2. T. Kaczorek, 'General response formula and minimums energy control for the general singular model for 2-D systems,' IEEE Trans. on Automatic Control, vol. 35, no. 4, pp. 433- 436, 1990 https://doi.org/10.1109/9.52296
  3. A. V. Karamanciogle and F. R. Lewis, 'Geometric theory for singular Roesser model,' IEEE Trans. on Automatic Control, vol. 37, no. 6, pp. 801-806, 1992 https://doi.org/10.1109/9.256336
  4. T. Kaczorek, 'Acceptable input sequences for singular 2-D linear systems,' IEEE Trans. on Automatic Control, vol. 38, no. 9, pp. 1391-1394, 1993 https://doi.org/10.1109/9.237652
  5. Y. Zou and S. L. Campbell, 'The jump behavior and stability analysis for 2-D singular systems,' Multidimensional Systems & Signal Processing, vol. 11, pp. 321-338, 2000
  6. C. Cai, W. Wang, and Y. Zou. 'A note on the internal stability for 2-D acceptable linear singular discrete systems,' Accepted by Multidimensional Systems & Signal Processing
  7. Y. Zou, W. Wang, and S. Xu, 'Structural stability of 2-D singular systems-Part I: basic properties,' Proc. of the Fourth International Conference on Control and Automation, Montreal, Canada, June, 2003
  8. Y. Zou, W. Wang, and S. Xu, 'Structural stability of 2-D singular systems Part II: a lyapunov approach,' Proc. of the Fourth International Conference on Control and Automation, Montreal, Canada, June, 2003
  9. W. Wang and Y. Zou, 'The detectability and observer design of 2-D singular systems,' IEEE Trans. on Circuits & Systems, vol. 49, no. 5, pp. 698-703, 2002 https://doi.org/10.1109/TCSI.2002.1001962
  10. Y. Zou, W. Wang, and S. Xu, 'Regular state observers design for 2-D singular Roesser models,' Proc. of the Fourth International Conference on Control and Automation, Montreal, Canada, June, 2003
  11. T. Kaczorek, 'The linear-quadratic optimal regulator for singular 2-D systems with variable coefficients,' IEEE Trans. on Automatic Control, vol. 34, no. 5, pp. 565-566, 1989 https://doi.org/10.1109/9.24218
  12. H. Xu, Y. Zou, S. Xu, and J. Lam, 'Bounded real lemma and robust $H_\infty$ control of 2-D singular Roesser models,' Submitted to Systems & Control Letters
  13. S. Xu, J. Lam, and C. Yang, 'Robust $H_\infty$ control of uncertain discrete singular systems with pole placement in a disk,' Systems & Control Letters, vol. 43, pp. 85-93, 2001 https://doi.org/10.1016/S0167-6911(00)00115-8
  14. B. D. O. Anderson and S. Vongpanitlerd, Network Analysis and Synthesis: A Modern System Theory Approach, Prentice-Hall, Upper Saddle River, NJ, 1973
  15. W. M. Haddad and D. S. Bernstein, 'Robust stabilization with positive real uncertainty: beyond the small gain theorem,' Systems & Control Letters, vol. 17, pp. 191-208, 1991 https://doi.org/10.1016/0167-6911(91)90065-M
  16. M. Vidyasagar, Nonlinear Systems Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1993
  17. P. Molander and J. C. Willems, 'Synthesis of state feedback control laws with a specified gain and phase margin,' IEEE Trans. on Automatic Control, vol. 25, no. 5, pp. 928-931, 1980 https://doi.org/10.1109/TAC.1980.1102462
  18. W. Sun, P. P. Khargonekar, and D. Shim, 'Solution to the positive real control problem for linear time-invariant systems,' IEEE Trans. on Automatic Control, vol. 39, no. 10, pp. 2034- 2046, 1994 https://doi.org/10.1109/9.328822
  19. M. S. Mahmoud, Y. C. Soh, and L. Xie, 'Observer-based positive real control of uncertain linear systems,' Automatica, vol. 35, pp. 749-754, 1999 https://doi.org/10.1016/S0005-1098(98)00216-7
  20. W. M. Haddad and D. S. Bernstein, 'Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle, and Popov theorems and their application to robust stability. part II: discrete-time theory,' International Journal of Robust Nonlinear Control, vol. 4, pp. 249-265, 1994 https://doi.org/10.1002/rnc.4590040203
  21. M. S. Mahmoud and L. Xie, 'Positive real analysis and synthesis of uncertain discrete time systems,' IEEE Trans. on Circuits & Systems, vol. 47, no. 3, pp. 403-406, 2000 https://doi.org/10.1109/81.841924
  22. S. Xu and J. Lam, 'Positive real control of uncertain singular systems with state delay,' Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Applications and Algorithms, vol. 9, pp. 387-402, 2002
  23. L. Zhang, J. Lam, and S. Xu, 'On positive realness of descriptor systems,' IEEE Trans. on Circuits & Systems-I: Fundamental Theory and Applications, vol. 49, no. 3, pp. 401-407, 2002 https://doi.org/10.1109/81.989180
  24. C. Du and L. Xie, $H_\infty$ Control and Filtering of Two-dimensional Systems, Springer-Verlag, Berlin, 2002
  25. T. Kaczorek, Two-Dimension Linear Systems, Spring-Verlag, New York ,1985
  26. D. Peaucelle, D. Arzelier, O. Bachelier, and J. Bernussou, 'A new robust D-stability condition for real convex polytopic uncertainty,' Systems & Control Letters, vol. 40, pp. 21-30, 2000 https://doi.org/10.1016/S0167-6911(99)00119-X