DOI QR코드

DOI QR Code

Multivariate Statistical Analysis Approach to Predict the Reactor Properties and the Product Quality of a Direct Esterification Reactor for PET Synthesis

다변량 통계분석법을 이용한 PET 중합공정 중 직접 에스테르화 반응기의 거동 및 생산제품 예측

  • 김성영 (경희대학교 환경응용화학부) ;
  • 정창복 (전남대학교 응용화학공학부) ;
  • 최수형 (전북대학교 화학공학부) ;
  • 이범석 (경희대학교 환경응용화학부) ;
  • 이범석 (경희대학교 환경응용화학부)
  • Published : 2005.06.01

Abstract

The multivariate statistical analysis methods, using both multiple linear regression(MLR) and partial least square(PLS), have been applied to predict the reactor properties and the product quality of a direct esterification reactor for polyethylene terephthalate(PET) synthesis. On the basis of the set of data including the flow rate of water vapor, the flow rate of EG vapor, the concentration of acid end groups of a product and other operating conditions such as temperature, pressure, reaction times and feed monomer mole ratio, two multi-variable analysis methods have been applied. Their regression and prediction abilities also have been compared. The prediction results are critically compared with the actual plant data and the other mathematical model based results in reliability. This paper shows that PLS method approach can be used for the reasonably accurate prediction of a product quality of a direct esterification reactor in PET synthesis process.

Keywords

References

  1. H. S. Song, Y. D. Park and J. C. Hyun, 'Optimization for the minimum reaction time of PET esterification,' Korean J. of Chem. Eng., vol. 13, no. 4, pp. 369-378, 1996 https://doi.org/10.1007/BF02705964
  2. 김정엽, 조현남, '폴리에틸렌테레프탈레이트(PET) 제조 기술,' 고분자과학과 기술, 제3권, 제2호, pp. 77-84, 4월, 1992
  3. J-Y Kim, H-Y Kim and Y-K Yeo, 'Identification of kinetics of direct esterification reactions for PET synthesis based on a generic algorithm,' Korean J. of Chem. Eng., vol. 18, no. 4, pp. 432-441, 2001 https://doi.org/10.1007/BF02698287
  4. K. Ravindranath and B. A. Mashelkar, 'Modeling of poly(ethylene terephthalate) reactors: a continuous esterification process,' Polym. Eng. Sci., vol. 22, no. 10, pp. 610-618, 1982 https://doi.org/10.1002/pen.760221005
  5. T. Yamada, 'A mathematical modeling for a continuous esterification process with recycle between terephthalate acid and ethylene glycol,' Journal of Applied Polymer Science, vol. 45, no. 11, pp. 1919-1936, Aug., 1992 https://doi.org/10.1002/app.1992.070451107
  6. C. K. Kang, B. C. Lee, D. W. Ihm and D. A. Tremblay, 'A simulation study on continuos direct esterification process for poly( ethylene terephthalate) synthesis,' Journal of Applied Polymer Science, vol. 63, no. 2, Jan., 1997
  7. L. Eriksson, J. L. M. Hermens, E. Johansson, H. J. M. Verhaar and S. Wold, 'Multivariate analysis aquatic toxicity data with PLS,' Aquatic Science, vol. 57, pp. 217, 1995 https://doi.org/10.1007/BF00877428
  8. J. F. MacGregor, C. Jaeckle, C. Kiparissides and M. Koutoudi, 'Process monitoring and diagnosis by multiblock PLS methods,' AIChE J., vol. 40, no. 5, pp. 826-838, 1994 https://doi.org/10.1002/aic.690400509
  9. T. Suzuki, K. Ohtaguchi and K. Koide, 'Computer-assisted approach to develop a new prediction method of liquid viscosity of organic compounds,' Computers Chem. Engng, vol. 20, no. 2, pp. 161-173, 1996 https://doi.org/10.1016/0098-1354(94)00012-D
  10. S. Qin, 'Recursive PLS algorithms for adaptive data modeling,' Computers Chem. Engng, vol. 22, no. 4/5, pp. 503-514, 1998 https://doi.org/10.1016/S0098-1354(97)00262-7
  11. 홍선주, 허창구, 한종훈, 'PLS 방법을 이용한 증류 공정의 국부적인 조성 추정 소프트센서,' 화학공학, 제37권, 제3호, pp. 445-452, 1999
  12. I-S Han, M. Kim, C-H Lee, W. Cha, B-K Ham, J-H Jeong, H. Lee, C. B. Chung, 'Application of partial least square methods to a terephthalic acid manufacturing process for product quality control,' Korean J. of Chem. Eng., vol. 20, no. 6, pp. 977-984, 2003 https://doi.org/10.1007/BF02706925
  13. P. Geladi, B. R. Kowalski, 'Partial least-squares regression : a tutorial,' Analytica Chemica Acta, (1986) https://doi.org/10.1016/0003-2670(86)80028-9
  14. S. de Jong, 'SIMPLS : an alternative approach to partial least squares regression,' Chem. Intell. Lab. Sys., 18, 251-263 (1993) https://doi.org/10.1016/0169-7439(93)85002-X