References
- T. H. Lee and S. S. Ge, 'Intelligent control of mechatronic systems', pp. 646-659, IEEE Symposium on Intelligent Control, 2003
- M. E. Magana and F. Holzapfel, 'Fuzzy-logic control of an inverted pendulum with vision feedback', pp. 165-170, IEEE Trans. on Education, vol. 41, no. 2, May 1998 https://doi.org/10.1109/13.669727
- D. Driankov, H. Hellendoorn, and M. Reinfrank, 'An introduction to fuzzy control', Springer, 1996
- T. H. Hung, M. F. Yeh, and H. C. Lu, 'A PI-like fuzzy controller implementation for the inverted pendulum system', pp. 218-222, IEEE Conference on Intelligent Processing Systems, 1997 https://doi.org/10.1109/ICIPS.1997.672769
- L. X. Wang, 'Adaptive fuzzy systems and control', Prentice Hall, 1994
- J. S. Wang and C. S. Lee, 'Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle', pp. 283-295, IEEE Trans. on Robotics and Automations, vol. 19, no. 2, 2003 https://doi.org/10.1109/TRA.2003.808865
- L. Peng and P. Y. Woo, 'Neural-fuzzy control system for robotic manipulators', IEEE Control Systems Magazine, pp. 53-63, vol. 22, no. 1, Feb. 2002 https://doi.org/10.1109/37.980247
- W. Wei, S. Zeng, and X. Gan, 'Fuzzy and neural network control system of intelligent RLED arm manipulators for dynamic obstacles', pp. 577-580, IEEE Conference on Fuzzy systems, 2001
- S. Pletl, 'Neuro-fuzzy control of rigid and flexible joint robotic manipulator', IEEE IECON, pp. 93-97, 1995 https://doi.org/10.1109/IECON.1995.483339
- A. J, P. H. Yang, D. M. Auslander, and R. N. Dave, 'Real time neuro-fuzzy control of a nonlinear dynamic system', Biennial Conf, of North American Fuzzy Information Processing, pp. 210-214, 1996 https://doi.org/10.1109/NAFIPS.1996.534733
- M. Miyamoto, M. Kawato, T. Setoyama, and R. Suzuki, 'Feedback error learning', IEEE Trans. on Neural Networks, vol. 1, pp.251-265,1988 https://doi.org/10.1109/72.80250
- S. Jung and T. C. Hsia, 'Neural network inverse control techniques for PD controlled robot manipulator', pp. 305-314, vol. 19, no. 3, ROBOTICA, 2002 https://doi.org/10.1017/S0263574799002064
- S. Jung and H. T. Cho, 'Decentralized neural network reference compensation technique for PD controlled two degrees of freedom inverted pendulum,' International Journal of Control, Automations, and Systems, vol. 2, no. 1, pp. 92-99, 2004