Machine Learning/Text Mining and Life Science

기계학습/텍스트마이닝과 생명과학

  • Published : 2005.05.01

Abstract

Keywords

References

  1. R. Quinlan, 'Induction of Decision Trees,'Machine Learning, Vol. 1, No. 1, pp.81-106, 1986
  2. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers,1993
  3. S.-B. Park, S.-H. Hwang, and B.-T. Zhang,'Classification of Human Papillomavirus (HPV) Risk Type via Text Mining,Genomics & Informatics, Vol. 1, NO. 2pp. 80-86, 2003
  4. N. Beerenwinkel. B. Schmidt, H. Walter R. Kaiser, T. Lengauer, D. Hoffmann, K Korn, and J. Selbig, 'Diversity and Complexity of HIV-l Drug Resistance: A Bioinformatics Approach to Predicting Phenotype from Genotype,' PNAS, Vol. 99,No. 12, pp. 8271-8276, 2002
  5. M. Dettling and P. Buehlmann, 'Boosting for Tumor Classification with Gene Expression Data,' Bioinformatics, Vol. 19,No. 9, pp. 1061-1069, 2003
  6. S. Lin, S. Patel, A. Duncan, and L.Goodwin, 'Using Decision Trees and Support Vector Machines to Classify Genes by Names,' In Proceedings of the European Workshop on Data Mining and Text Mining for Bioinformatics. pp. 35-41, 2003
  7. T. Mitchell, Machine Learning, McGraw-Hill, 1997
  8. G. Stormo, T. Schneider, L. Gold, and A.Ehrenfeucht, 'Use of Perceptron Algorithm to Distinguish Translational Initiation Sites in e.coli.' Nucl. Acids Res., Vol. 10,pp. 2997-3011, 1982
  9. N. Qian and T. Sejnowski, 'Predicting the Secondary Structure of Globular Proteins Using Neural Network Models,' J. Mol.Biol., Vol 202, pp. 865-884, 1988
  10. H. Nielsen, J. Engelbrecht, S. Brunak,and G. Heijne, 'Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of Their Cleavage Site,' Prot. Eng., Vol. 10, pp. 1-6, 1997
  11. B.-H. Kim, S.-B. Park, and B.-T. Zhang,'PromSearch: A Hybrid Approach to Human Core-Promoter Prediction,' Lecture Notes in Computer Science, Vol. 3177, pp.125-131, 2004
  12. V. Vapnik, Statistical Learning Theory,Springer, 1998
  13. C. Burges, 'A Tutorial on Support Vector Machines for Pattern Recognition,' Data Mlning and Knowledge Discovery, Vol. 2,No. 2, pp. 121-167, 1998
  14. M. Brown, W. Grundy, D. Lin, N. Cris-tianini, C. Sugnet, T. Furey, M. Ares, and D. Haussler, 'Knowledge-based Analysis of Microarray Gene Expression Data by Using Support Vector Machines,' PNAS Vol. 97, pp. 262-267, 2000
  15. I. Guyon, J Weston, S. Barnhill, and V. Vapnik, 'Gene Selection for Cancer Classi fication Using Support Vector Machines, Machine Learning, Vol. 46, No. 1, pp.389-422, 2002
  16. A. Zien, G. Raetsch, S. Mika, B. Scholkopf, T. Lengauer, and K. Muller, 'Engineering Support Vector Machine Kernels that Recognize Translation Initiation Sites, Bioinformatics, Vol. 16, No. 9, pp.799-807, 2000
  17. C. Ding and I. Dubchak, 'Multi-class Protein Fold Recognition Using Support Vector Machines and Neural Networks, Bioinformatics, Vol. 17, pp. 349-358,2001
  18. J.-G. Joung, S.-J. 0, and B.-T. Zhang,'Prediction of the Risk Types of Human Papillomaviruses by Support Vector Machines,' Lecture Notes in Artificial Intelligence, Vol. 3157, pp. 723-731,2004
  19. M. Eisen, P. Spellman, P. Brown, D.Botstein, 'Cluster Analysis and Display of Genome-wide Expression Patterns,' PNAS,Vol. 95, pp 14863-14868, 1998
  20. P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. Lander,and T. Golub, 'Interpreting Patterns of Gene Expression with Self-Organizing Maps: Methods and Application to Hematopoietic Differentiation,' PNAS, Vol.96, pp. 2907-2912, 1999
  21. B.-T. Zhang, J. Yang, and S.-W. Chi'Self-Organizing Latent Lattice Models forTemporal Gene Expression Profiling,Machine Learning, Vol. 52, No. 1/2, pp.67-89, 2003
  22. R. Sharan and R. Shamlr, 'CLICK: A Clustering Algorithm with Applications to Gene Expression Analysis,' In Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology, pp. 307-316, 2000
  23. 박성배, 자연언어 학습을 위한 최대 엔트로피 부스팅 모델, 서울대학교 전기컴퓨터공학부 박사학위 논문, 2002
  24. S.-B. Park, S.-H. Hwang, and B.-T.Zhang, 'Mining the Risk Types of Human Papillomavirus (HPV) by AdaCost,' Lecture Notes in Computer Science, Vol. 2690, pp.403-412, 2003
  25. A. Kowalczyk and B. Raskutti, Single Class SVM for Yeast Gene Regulation Prediction, KDD Cup 2002 Task 2 Winner
  26. K.-J. Lee, Y.-S. Hwang, S.-H. Kim, and H.-C. Rim, 'Biomedical Named Entity Recognition Using Two-phase Model Based on SVMs,' Journal of Biomedical Infor-matics, VOl. 37, No. 6, pp. 436-447, 2004
  27. V. Hatzivassiloglou, P. Duboue, and A. Rzhetsky, 'Disambiguating Proteins, Genes, and .RNA in Text: A Machine Learning Approach,' Bioinformatics, Vol. 17, Suppl. 1, pp. 97-106, 2001
  28. J.-D. Kim, T. Ohta, Y. Tateisi, and J.Tsujii, 'GENIA corpus: A Semantically Annotated Corpus for Bio-Textmining, Bioinformatics, Vol. 19, Suppl. 1, pp.180-182, 2003
  29. S.-B. Park and B.-T. Zhang, 'A Boosted Maximum Entropy Model for Learning Text Chunking,' In Proceedings of the 19th International Conference on MachineLearning, pp. 482-489, 2002
  30. T. Zhang, F. Damerau, and D. Johnson, 'Text Chunking Based on a Generalization of Winnow,' Journal of Machine Learning Research. Vol. 2, pp. 615-637, 2002