초록
인간을 상대하는 자율장치는 고객의 자발적인 협조를 얻기 위해 암시적인 신호에 포함된 감정과 태도를 인지할 수 있어야 한다. 인간에게 음성은 가장 쉽고 자연스럽게 정보를 교환할 수 있는 수단이다. 지금까지 감정과 태도를 이해할 수 있는 자동시스템은 발성문장의 피치와 에너지에 기반한 특징을 활용하였다. 이와 같은 기존의 감정인식 시스템의 성능은 문장의 특정한 억양구간이 감정과 태도와 관련을 갖는다는 언어학적 지식의 활용으로 보다 높은 향상이 가능하다. 본 논문에서는 한국어 문미억양에 대한 언어학적 지식을 피치기반 특징과 다층신경망을 활용하여 구현한 자동시스템에 적용하여 감정인식률을 향상시킨다. 한국어 감정음성 데이터베이스를 대상으로 실험을 실시한 결과 $4\%$의 인식률 향상을 확인하였다.
Autonomic machines interacting with human should have capability to perceive the states of emotion and attitude through implicit messages for obtaining voluntary cooperation from their clients. Voice is the easiest and most natural way to exchange human messages. The automatic systems capable to understanding the states of emotion and attitude have utilized features based on pitch and energy of uttered sentences. Performance of the existing emotion recognition systems can be further improved withthe support of linguistic knowledge that specific tonal section in a sentence is related with the states of emotion and attitude. In this paper, we attempt to improve recognition rate of emotion by adopting such linguistic knowledge for Korean ending boundary tones into anautomatic system implemented using pitch-related features and multilayer perceptrons. From the results of an experiment over a Korean emotional speech database, the improvement of $4\%$ is confirmed.