자기-구성 클러스터링의 모델링 및 성능평가

Modeling of Self-Constructed Clustering and Performance Evaluation

  • 유정웅 (충북대학교 전기전자컴퓨터공학부) ;
  • 김승석 (충북대학교 전기전자컴퓨터공학부) ;
  • 송창규 (충북대학교 전기전자컴퓨터공학부) ;
  • 김성수 (충북대학교 전기전자컴퓨터공학부)
  • 발행 : 2005.06.01

초록

본 논문에서는 퍼지 추론 시스템의 추론 정보를 이용하여 자율적으로 구조를 결정하는 클러스터링 기법을 제안한다. 제안된 기법은 주어진 입출력 데이터를 이용하여 자율적으로 클러스터의 수를 추정하고 동시에 이들 파라미터를 최적화한다. 일반적인 클러스터링 기법에서 볼 수 있었던 비교사학습을 교사학습으로 확장하여 클러스터 추정에 입출력 인과 관계를 고려한 학습을 실시하게 하여 전체 모델의 성능을 개선하고자 하였다. 출력 정보가 입력공간에서 클러스터링 학습에 적용됨으로써 클러스터링에서의 각 클래스의 구분 작업이 더 원활하게 이루어 질 수 있다. 모의실험을 통하여 기존의 연구 결과와 비교하여 제안된 기법의 유용성을 보인다.

In this paper, we propose a self-constructed clustering algorithm based on inference information of the fuzzy model. This method makes it possible to automatically detect and optimize the number of cluster and parameters by using input-output data. The propose method improves the performance of clustering by extended supervised learning technique. This technique uses the output information as well as input characteristics. For effect the similarity measure in clustering, we use the TSK fuzzy model to sent the information of output. In the conceptually, we design a learning method that use to feedback the information of output to the clustering since proposed algorithm perform to separate each classes in input data space. We show effectiveness of proposed method using simulation than previous ones

키워드

참고문헌

  1. Chin-Teng Lin, C. S. George. Lee, Neural Fuzzy Systems : A Neuro-Fuzzy Synergism to Intelligent Systems, Prentice Hall, 1996
  2. J-S. R. Jang, C. T. Sun, E. Mizutani, NeuroFuzzy and Soft Computing:A Computational Approach to Learning and Machine Intelligence, Prentice Hall 1997
  3. 김승석, 김성수, 유정웅, '새로운 클러스터링알 고리듬을 적용한 향상된 뉴로-퍼지 모델링', 대한전기학회 논문지,Vol. 53D, No. 7, pp.536-543, 2004
  4. R. R. Yager, D. P. Filev, 'Generation of Fuzzy Rules by Mountain Clustering,' Jounal of Intelligent and Fuzzy System, Vol.2, pp. 209-219, 1994
  5. Guorong Xuan, Wei Zhang, Peiqi Chai, 'EM algoritlun of Gaussian Mixture Model and Hidden Markov Model,' Image Processing Proceedings, International Conference on, Vol. 1, pp. 145-148. 2001
  6. Witold Pedrycz, 'Conditional Fuzzy Clustering in the Design of Radial Basis Function Neural Network,' IEEE Trans on. Neual Network, Vol. 9, No.4, pp. 601-612, 1998 https://doi.org/10.1109/72.701174
  7. Ching-Chang Wong, Chia-Chong Chen, 'A Hybrid Clustering and Gradient Descent Approach for Fuzzy Modeling,' IEEE Trans on Systems, Man, and Cybernetics-Part B : Cybernetics, Vol. 29, No.6, pp. 686-693, 1999
  8. Witold Pedrycz, 'An Identification Algoritlun in Fuzzy Relational Systems,' Fuzzy Sets and Systems, Vol. 13, pp. 153-167, 1984 https://doi.org/10.1016/0165-0114(84)90015-0
  9. C. Xu and L. Lu, 'Fuzzy model Identification and Self-Learning for Dynamic Systems,' IEEE Trans on Systems, Man and Cybernetics, Vol. SMC-17, pp. 683-689, 1987
  10. M. Sugeno, K. Tanaka, 'Successive Identification of a Fuzzy Model and Its Application to Prediction of a Complex System,' Fuzzy Sets and Systems, Vol. 42, pp. 315-334, 1991 https://doi.org/10.1016/0165-0114(91)90110-C
  11. J. Abonyi, L. Nagy, and F. Szeifert, 'Adaptive Fuzzy Inference Systems and Its Application in Modeling Based Control,' Chemical Engineering Research and Design, Trans IChemE, Vol. 77A, pp. 281-290, 1999
  12. Janos Abonyi, Robert Babuska, Ferenc Szeifert, 'Fuzzy Modeling With Multivariate Membership Functions : Gray-Box Identification and Control Design,' IEEE Trans on. Systems, Man, and Cybernetics-Part B : Cybernetics, Vol. 31, No.5, pp. 755-767, 2001 https://doi.org/10.1109/3477.956037
  13. S. R. Jang, 'Input Selection for ANFIS Learning,' Proceeding of Fifth IEEE International Conference on Fuzzy Systems, Vol. 2, pp. 8-11, 1996
  14. S. K. Oh, Witold Pedrycz, 'Identification of Fuzzy System by Means of an Auto-Tuning Algorithm and Its Application to Nonlinear Systems,' Fuzzy Sets and Systems, Vol. 115, pp. 205-230, 2000 https://doi.org/10.1016/S0165-0114(98)00174-2