레일레이 패이딩 채널에서 다중 반송자 DS/CDMA 통신 시스템의 전력-전송율 적응 방식

Power and Rate Adaptations in Multi-carrier DS/CDMA Communications over Rayleigh Fading Channel

  • 안희준 (서울산업대학교 제어계측공학과) ;
  • 이예훈 (삼성전자 종합기술원)
  • 발행 : 2005.06.01

초록

다중 반송자를 사용하는 CDMA 통신 시스템에서 주파수 영역의 전력과 시간 영역의 전송율을 적응적으로 사용하는 시스템을 분석하였다. 수신단으로 부터 얻는 이상적인 채널상태 정보를 가정하고, 주파수 영역에서는 각 사용자의 부채널 중에서 가장 채널상태가 좋은 한 대역을 선택하고, 시간영역에서는 목표 수신 품질을 만족하도록 전송율을 조정한다. 단일 사용자의 경우에 평균 BER을 최소화 할 수 있는 최적의 전송 방식의 식을 유도하였다. 채널 상태 역수 법이 사용 대역의 수나, 평균 전송양이 증가할 때 최적의 알고리듬이라는 사실 또한 증명하였다. 수학적 분석과 시뮬레이션 결과 제안된 주파수 시간 적응 알고리듬을 사용한 방식이 주파수영역에서만 선택적인 방법을 사용하는 MC-CDMA 방식과 비교하여 현격히 좋은 성능을 보임을 보였다. 또한 제안된 적응형 MC-CDMA 전송방식과 기존의 RAKE 수신기를 사용하고 시간 영역에서 적응적 방식을 사용하는 DS-CDMA 시스템과 성능을 비교하였다.

We present power(in frequency domain) and rate adaptation(in time domain) schemes in multicarrier (MC) direct-sequence code-division multiple-access(DS/CDMA) communications. Utilizing channel state information from the receiver, the adaptation schemes allocate power the user's sub-band with the largest channel gain. In the time domain, the transmission data rate is adapted for a desired transmission quality. In the case of single-user channels, a closed-form expression is derived for an optimal time domain power adaptation that minimizes the average bit error rate(BER). Channel inversion power adaptation is found to provide nearly optimal performance in this case, as the number of sub-bands or available average transmission power increase. Analysis and simulation results show the BER performance of the proposed power and rate adaptations with fixed average transmission power significantly improves the performance over the power allocation in the frequency domain only. Also, we compare the performance of the proposed power and rate adaptation schemes in MC-DS/CDMA systems with that of power and rate adapted single carrier DS/CDMA systems with RAKE receiver.

키워드

참고문헌

  1. S. Hara and R. Prasad, 'Overview of multicarrier CDMA,' IEEE Commun. Mag., pp. 126-133, Dec. 1997
  2. N. Yee, J. P. Linnartz, and G. Fettweis, 'Multicarrier CDMA in indoor wireless radio networks,' in Proc. IEEE PIMRC, pp. D1.3.1- D1.3.5, Sep. 1993
  3. K. Fazel and L. Papke, 'On the performance of convolutionally-coded CDMA/OFDM for mobile communication system,' in Proc. IEEE PIMRC, pp. D3.2.1-D3.2.5, Sep. 1993
  4. S. Kondo and L. B. Milstein, 'Performance of multicarrier DS CDMA systems,' IEEE Trans. Commun., vol. 44, pp. 238-246, Feb. 1996 https://doi.org/10.1109/26.486616
  5. E. A. Sourour and M. Nakagawa, 'Performance of orthogonal multicarrier CDMA in a multipath fading channel,' IEEE Trans. Commun., vol. 44, pp. 356-367, Mar. 1996 https://doi.org/10.1109/26.486330
  6. K. S. Gilhousen et aI., 'On the capacity of a cellular CDMA system,' IEEE Trans. Veh. Technol., vol, 40, pp. 303-312, May 1991 https://doi.org/10.1109/25.289411
  7. S. Abeta, S. Sampei, and N. Morinaga, 'Channel activation with adaptive coding rate and processing gain control for cellular DS/CDMA systems,' in Proc. IEEE VTC, pp. 1115-1119, May 1996 https://doi.org/10.1109/VETEC.1996.501485
  8. S. W. Kim, 'Adaptive rate and power DS/CDMA communications in fading channels,' IEEE Commun. Lett., pp. 85-87, Apr. 1999
  9. S. W. Kim and Y. H. Lee, 'Combined rate and power adaptation in DS/CDMA communications over Nakagami fading channels,' IEEE Trans. Commun., pp. 162-168, Jan. 2000
  10. Q. Chen, E. S. Sousa, and S. Pasupathy, 'Multicarrier CDMA with adaptive frequency hopping for mobile radio systems,' IEEE J. Select. Areas Commun., vol. 14, pp. 1852-1858, Dec. 1996 https://doi.org/10.1109/49.545707
  11. Y. H. Kim, I. Song, S. Yoon, and S. R. Park, 'A multi carrier CDMA system with adaptive subchannel allocation for forward links,' IEEE Trans. Veh. Technol., vol. 48, pp. 1428-1436, Sep. 1999 https://doi.org/10.1109/25.790516
  12. D. G. Brennan, 'Linear diversity combining technique,' Proc. IRE, vol. 47, pp. 1075-1102, June 1959 https://doi.org/10.1109/JRPROC.1959.287136
  13. H. A. David, Order Statistics. John Wiley and Sons, 2nd ed., 1981
  14. W. C. Jakes, Jr., Microwave Mobile Communications. John Wiley and Sons, 1974
  15. J. S. Lee and L. E. Miller, CDMA Systems Engineering Handbook. Artech .House, 1998
  16. R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I, Interscience Publishers, Inc., 1953
  17. Y. H. Lee, Power and rate adaptation in CDMA communications. PhD thesis, Inform. Transmission Lab., Korea Adv. Inst. Science and Technol. (KAIST), Daejeon, Korea, Feb. 2000
  18. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeey, and D. E. Knuth, 'On the Lambert W function,' Adv. Computat. Math., vol. 5, pp. 329-359, 1996 https://doi.org/10.1007/BF02124750
  19. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products. Academic Press, corrected and enlarged ed., 1980
  20. W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, John Wiley and Sons, 2nd ed., 1971
  21. M. Schwartz, W. R. Bennett, and S. Stein, Communication Systems and Techniques. New-York: McGraw-Hill, 1966
  22. 김원섭, 박진수, '다중경로 페이딩 채널에서 Hybrid SC/MRC 기법이 적용된 MC/DS CDMA 시스템의 성능분석,' 한국통신학회 논문지 제27권, 7A호 한국통신학회, 2004
  23. E. A. Geraniotis and M. B. Pursley, 'Error probabilities for slow frequency-hopped' spread-spectrum multiple-access communications over fading channels,' IEEE Trans. Commun., vol. 31, pp. 996-1009, May 1982
  24. J. D. Kim, S. W. Kim, and Y. G. Kim, 'Combined power control and error-control coding in multicarrier DS-CDMA systems,' IEEE Trans. Commun., vol. 52, pp. 1282-1287, Aug. 2004 https://doi.org/10.1109/TCOMM.2004.833039
  25. Y. H. Lee and Y. Bar-Ness, 'Transmission power adaptations in MC-CDMA communications over Rayleigh fading channels,' in Proc. IEEE WCNC, pp. 1589-1594, March 2004