Abstract
The first step of face recognition is to align an input face picture with database images. We propose a new algorithm of removing registration error in eigenspace. Our algorithm can correct for translation, rotation and scale changes. Linear matrix modeling of registration error enables us to compensate for subpixel errors in eigenspace. After calculating derivative of a weighting vector in eigenspace we can obtain the amount of translation or rotation without time consuming search. We verify that the correction enhances the recognition rate dramatically.
얼굴 인식에서는 입력 영상에서 얼굴을 검출한 후에 데이터베이스의 영상과 위치와 크기를 일치시키는 등록 과정이 필요하다. 본 논문에서는 영상의 등록 과정에서 발생하는 얼굴영상의 이동, 회전, 혹은 크기의 차이를 eigenspace에서 보정하는 알고리즘을 제안하였다. 이를 위하여 얼굴 영상의 수직, 수평 이동, 회전, 크기 변환 등의 등록오차를 선형보간 행렬로 근사하였다. 각 변환행렬을 사용하여 등록오차에 따른 미분계수를 eigenspace에서 구하면 subpixel 단위의 등록 오차를 보정할 수 있다. 제안된 방법은 공간 영역에서 오차를 보정하는 것보다 계산량이 훨씬 더 적다. 오차 보정 후 얼굴 인식률이 크게 향상되는 것을 실험으로 확인하였다.