ASIC Design of Lifting Processor for Motion JPEG2000

Motion JPEG2000을 위한 리프팅 프로세서의 ASIC 설계

  • Published : 2005.05.01

Abstract

In this paper, we proposed a new lifting architecture for JPEG2000 and implemented to ASIC. We proposed a new cell to execute unit calculation of lifting using the property of lifting which is the repetitious arithmetic with same structure, and then recomposed the whole lifting by expanding it. After the operational sequence of lifting arithmetic was analyzed in detail and the causality was imposed for implementation to hardware, the unit cell was optimized. A new lifting kernel was organized by expanding simply the unit cell, and a lifting processor was implemented for Motion JPEG2000 using it. The implemented lifting kernel can accommodate the tile size of $1024{\times}1024$, and support both lossy compression using the (9,7) filter and lossless compression using (5,3) filter. Also, it has the same output rate as input rate, and can continuously output the wavelet coefficients of 4 types(LL, LH, HL, HH) at the same time. The implemented lifting processor completed a course of ASIC using $0.35{\mu}m$ CMOS library of SAMSUNG. It occupied about 90,000 gates, and stably operated in about 150MHz though difference from the used macro cell for the multiplier. Finally, the improved operated in about 150MHz though difference from the used macro cell for the multiplier. Finally, the performance can be identified in comparison with the previous researches and commercial IPs.

본 논문에서는 JPEG2000을 위한 새로운 리프팅 구조를 제안하고 ASIC으로 구현하였다. 동일한 구조의 반복적인 연산을 통해서 수행되는 리프팅의 특성을 이용하여 단위 연산을 수행할 수 있는 셀을 제안하고 이를 확장하여 전체 리프팅을 재구성하였다. 먼저, 리프팅 연산의 동작 순서를 분석하고 하드웨어의 구현을 고려한 인과성을 부여한 후 단위 셀을 최적화하였다. 제안한 셀의 단순한 확장을 통해서 리프팅 커널을 구성하고, 이를 이용하여 Motion JPEG2000을 위한 리프팅 프로세서를 구현하였다. 구현한 리프팅 커널은 최대 $1024{\times}1024$ 크기의 타일(Tile)을 수용할 수 있고, (9,7)필터를 이용한 손실압축과 (5,3)필터를 이용한 무손실압축을 모두 지원한다. 또한 입력 데이터율과 동일한 출력율을 가지고, 일정 대기지연 시간이후 4가지 부대역(LL, LH, HL, HH)의 웨이블릿 계수들을 연속적으로 동시에 출력할 수 있다. 구현한 리프팅 프로세서는 SAMSUNG의 $0.35{\mu}m$ CMOS 라이브러리를 이용하여 ASIC 과정을 거쳤다. 약 9만개의 게이트를 사용하고, 곱셈기로 사용된 매크로 셀에 따라 차이는 있지만 약 150MHz 이상의 속도에서 안정적으로 동작이 가능하였다. 최종적으로 기존의 연구 및 상용 IP와의 비교에서도 종합적으로 우수한 성능을 보이는 것을 확인할 수 있었다.

Keywords

References

  1. M. Boliek, C. Christopoulos, and Eric Majani, 'JPEG 2000 part-I final draft international standard', ISO/IEC JTC1/SC29 WG1, 24 Aug. 2000
  2. K. K. Parhi and T. Nishitani, 'VLSI architectures for discrete wavelet transforms,' IEEE Trans. VLSI Syst., vol. 1, pp. 191-202, June 1993 https://doi.org/10.1109/92.238416
  3. A. Grzeszczak, M. K. MandaI, S. Panchanathan, and T. Yeap, 'VLSI implementation of discrete wavelet transform,' IEEE Trans. VLSI Syst., vol. 4, pp. 421-433, June 1996 https://doi.org/10.1109/92.544407
  4. G. Lafruit, L. Nachtergaele, J. Bormans, M. Engels, and I. Bolsens, 'Optimal memory organization for scalable texture codecs in MPEG-4,' IEEE Trans. Circuits Syst. Video Technol., vol. 9, pp. 218-243, Mar. 1999 https://doi.org/10.1109/76.752091
  5. M. Ferretti and D. Rizzo, 'A parallel architecture for the 2-D discrete wavelet transform with integer lifting scheme,' J. VLSI Signal Processing, vol. 28, pp. 165-185, July 2001 https://doi.org/10.1023/A:1011161423836
  6. K. Andra, C. Chakrabarti, and T. Acharya, 'A VLSI architecture for lifting-based forward and inverse wavelet transform', IEEE Trans. on Signal Processing, vol. 50, no. 4, April 2002
  7. G. Dillen, B. Georis, J. D. Legat, and O. Cantineau, 'Combined Line-Based Architecture for the 5-3 and 9-7 Wavelet Tansform of JPEG2000', IEEE Transactions on Circuit Syst. Video Technol., vol. 13, no. 9, Sep. 2003.
  8. http://www.barco.com$_{}$contracting/Downloads/IPProducts/BA113FDWTFactSheet.pdf
  9. http://www.cast-inc.com/cores/rc_2ddwt/rc_ 2dd-wt-a.pdf
  10. http://www.cast-inc.com/cores/lb_2dfdwt/lb_ 2d-fdwt-x.pdf
  11. http://www.cast-inc.com/cores/bb_2dfdwt/casc bb_2dfdwt-x.pdf
  12. http://www.arnphion.com/cs6210.html
  13. I. Daubechies and W. Sweldens, 'Factoring wavelet transforms into lifting schemes,' J. Fourier Anal. Appl., vol. 4, pp. 247-269, 1998 https://doi.org/10.1007/BF02476026
  14. W. Sweldens, 'The lifting scheme: A new philosophy in biorthogonal wavelet constructions,' in Proc. SPIE, vol. 2569, 1995, pp. 68-79 https://doi.org/10.1117/12.217619