MOMENTS OF VARIOGRAM ESTIMATOR FOR A GENERALIZED SKEW t DISTRIBUTION

  • Published : 2005.06.01

Abstract

Variogram estimation is an important step of spatial statistics since it determines the kriging weights. Matheron's variogram estimator can be written as a quadratic form of the observed data. In this paper, we extend a skew t distribution to a generalized skew t distribution and moments of the variogram estimator for a generalized skew t distribution are derived in closed forms. After calculating the correlation structure of the variogram estimator, variogram fitting by generalized least squares is discussed.

Keywords

References

  1. ARELLANO-VALLE, R.B. AND BOLFARINE, H. (1995). 'On some characterizations of the t-distribution', Statistics & Probability Letters, 25, 79-85 https://doi.org/10.1016/0167-7152(94)00208-P
  2. AZZALINI, A. AND CAPITANIO (1999). 'Statistical applications of the multivariate skew normal distribution', Journal of the Royal Statistical Society Series B, 61, 579-602 https://doi.org/10.1111/1467-9868.00194
  3. AZZALINI, A. AND CAPITANIO (2003). 'Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution', Journal of the Royal Statistical Society Series B, 65, 367-389 https://doi.org/10.1111/1467-9868.00391
  4. AZZALINI, A. AND DALLA VALLE, A. (1996). 'The multivariate skew-normal distribution', Biometrika, 83, 715-726 https://doi.org/10.1093/biomet/83.4.715
  5. CRESSIE, N. (1993). Statistics for Spatial Data (rev. ed.), WHey, New York
  6. FANG, K.-T., KOTZ, S., AND NG, K.W. (1989). Symmetric Multivariate and Related Distributions, Chapman and Hall, New York
  7. GENTON, M.G. (1998a). 'Variogram fitting by generalized least squares using an explicit formula for the covariance structure', Mathematical Geology, 30, 323-345 https://doi.org/10.1023/A:1021733006262
  8. GENTON, M.G. (1998b). 'Highly robust Variogram estimation', Mathematical Geology, 30, 213-221 https://doi.org/10.1023/A:1021728614555
  9. GENTON, M.G. (2000). 'The correlation structure of Matheron's classical variogram estimator under elliptically contoured distributions', Mathematical Geology, 32, 127-137 https://doi.org/10.1023/A:1007511019496
  10. GENTON, M.G., HE, L. AND LIU, X. (2001). 'Moments of skew-normal random vectors and their quadratic forms', Statistics & Probability Letters, 51, 319-325 https://doi.org/10.1016/S0167-7152(00)00164-4
  11. GORSICH, D.J., GENTON, M.G., AND STRANG, G. (2002). 'Eigenstructures of Spatial Design Matrices', Journal of Multivariate Analysis, 80, 138-165 https://doi.org/10.1006/jmva.2000.1976
  12. HENDERSON, H.V. AND SEARLE, S.R. (1981). 'On deriving the inverse of a sum of matrices', SIAM Review, 33, 53-60 https://doi.org/10.1137/1023004
  13. KIM, H.-M., MALLICK, B.K. (2003). 'Moments of random vectors with skew t distribution and their quadratic forms', Statistics & Probability Letters, 63, 417-423 https://doi.org/10.1016/S0167-7152(03)00121-4
  14. LI, G. (1987). 'Moments of a random vector and its quadratic forms', Journal of Statistical Applied Probability, 2, 219-229
  15. MARDIA, K.V. (1970). 'Measures of multivariate skewness and kurtosis with applications', Biometrika, 57, 519-530 https://doi.org/10.1093/biomet/57.3.519
  16. MARDIA, K.V. (1974). 'Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies', Sankhya Ser. B, 36, 115-128
  17. MUIRHEAD, R.J. (1982). Aspects of Multivariate Statistical Theory, WHey, New York
  18. SCHOTT, JAMES R. (1997). Matrix Analysis for Statistics, Wiley, New York