References
- ARELLANO-VALLE, R.B. AND BOLFARINE, H. (1995). 'On some characterizations of the t-distribution', Statistics & Probability Letters, 25, 79-85 https://doi.org/10.1016/0167-7152(94)00208-P
- AZZALINI, A. AND CAPITANIO (1999). 'Statistical applications of the multivariate skew normal distribution', Journal of the Royal Statistical Society Series B, 61, 579-602 https://doi.org/10.1111/1467-9868.00194
- AZZALINI, A. AND CAPITANIO (2003). 'Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution', Journal of the Royal Statistical Society Series B, 65, 367-389 https://doi.org/10.1111/1467-9868.00391
- AZZALINI, A. AND DALLA VALLE, A. (1996). 'The multivariate skew-normal distribution', Biometrika, 83, 715-726 https://doi.org/10.1093/biomet/83.4.715
- CRESSIE, N. (1993). Statistics for Spatial Data (rev. ed.), WHey, New York
- FANG, K.-T., KOTZ, S., AND NG, K.W. (1989). Symmetric Multivariate and Related Distributions, Chapman and Hall, New York
- GENTON, M.G. (1998a). 'Variogram fitting by generalized least squares using an explicit formula for the covariance structure', Mathematical Geology, 30, 323-345 https://doi.org/10.1023/A:1021733006262
- GENTON, M.G. (1998b). 'Highly robust Variogram estimation', Mathematical Geology, 30, 213-221 https://doi.org/10.1023/A:1021728614555
- GENTON, M.G. (2000). 'The correlation structure of Matheron's classical variogram estimator under elliptically contoured distributions', Mathematical Geology, 32, 127-137 https://doi.org/10.1023/A:1007511019496
- GENTON, M.G., HE, L. AND LIU, X. (2001). 'Moments of skew-normal random vectors and their quadratic forms', Statistics & Probability Letters, 51, 319-325 https://doi.org/10.1016/S0167-7152(00)00164-4
- GORSICH, D.J., GENTON, M.G., AND STRANG, G. (2002). 'Eigenstructures of Spatial Design Matrices', Journal of Multivariate Analysis, 80, 138-165 https://doi.org/10.1006/jmva.2000.1976
- HENDERSON, H.V. AND SEARLE, S.R. (1981). 'On deriving the inverse of a sum of matrices', SIAM Review, 33, 53-60 https://doi.org/10.1137/1023004
- KIM, H.-M., MALLICK, B.K. (2003). 'Moments of random vectors with skew t distribution and their quadratic forms', Statistics & Probability Letters, 63, 417-423 https://doi.org/10.1016/S0167-7152(03)00121-4
- LI, G. (1987). 'Moments of a random vector and its quadratic forms', Journal of Statistical Applied Probability, 2, 219-229
- MARDIA, K.V. (1970). 'Measures of multivariate skewness and kurtosis with applications', Biometrika, 57, 519-530 https://doi.org/10.1093/biomet/57.3.519
- MARDIA, K.V. (1974). 'Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies', Sankhya Ser. B, 36, 115-128
- MUIRHEAD, R.J. (1982). Aspects of Multivariate Statistical Theory, WHey, New York
- SCHOTT, JAMES R. (1997). Matrix Analysis for Statistics, Wiley, New York