Characterization of the Pediocin Operon of Pediococcus acidilactici K10 and Expression of His-Tagged Recombinant Pediocin PA-1 in Escherichia coli

  • MOON GI SEONG (Food Safety Research Division, Korea Food Research Institute, Seongnam) ;
  • PYUN YU RYANG (Department of Biotechnology, Yonsei University) ;
  • KIM WANG JUNE (Food Safety Research Division, Korea Food Research Institute, Seongnam)
  • Published : 2005.04.01

Abstract

The relationship between plasmid (~9.5 kb) and pediocin PA-1 in P. acidilactici K10 was confirmed by plasmid curing. The pediocin operon of P. acidilactici K10 was amplified by PCR (polymerase chain reaction), and the nucleotide sequence was analyzed. The sequence of the pediocin operon of P. acidilactici K10 was similar to those of P. acidilactici strains producing pediocin PA-1/ AcH. For the expression of pediocin PA-1 in E. coli, a pQEPED (pQE-30 Xa::mature pedA) was constructed. His-tagged recombinant pediocin PA-1 (-6.5 kDa) was translated by cell-free in vitro transcription and translation using pQEPED as a DNA template. Theresult of slot blotting assay showed that transcription of recombinant pedA in E. coli M15 was induced by the addition of isopropyl-$\beta$-D-thiogalactopyranoside (IPTG) at the final concentration of 1 mM. Although the recombinant pediocin PA-1 inhibited the growth of E. coli, it was expressed in the host strain and purified by nickel-nitrilotriacetic acid (Ni-NTA) metal-affinity chromatography under denaturing condition. This is the first report for the production and one-step purification of biologically active recombinant pediocin PA-1 in E. coli.

Keywords

References

  1. Bukhtiyarova, M., R. Yang, and B. Ray. 1994. Analysis of the pediocin AcH gene cluster from plasmid pSMB74 and its expression in a pediocin-negative Pediococcus acidilactici strain. Appl. Environ. Microbiol. 60: 3405- 3408
  2. Chen, Y., R. Shapira, M. Eisenstein, and T. J. Montville. 1997. Functional characterization of pediocin PA-1 binding to liposomes in the absence of a protein receptor and its relationship to a predicted tertiary structure. Appl. Environ. Microbiol. 63: 524- 531
  3. Gibbs, G. M., B. E. Davidson, and A. J. Hiller. 2004. Novel expression system for large-scale production and purification of recombinant class IIa bacteriocins and its application to piscicolin 126. Appl. Environ. Microbiol. 70: 3292- 3297 https://doi.org/10.1128/AEM.70.6.3292-3297.2004
  4. Gonzalez, C. F. and B. S. Kunka. 1987. Plasmid-associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Appl. Environ. Microbiol. 53: 2534- 2538
  5. Gratia, A. 1925. Sur un remarquable example dantagonisme entre souches de coli-bacille. CR. Soc. Biol. 93: 1040- 1041
  6. Hurst, A. 1981. Nisin. Adv. Appl. Microbiol. 27: 85- 123 https://doi.org/10.1016/S0065-2164(08)70342-3
  7. Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171- 200
  8. Johnsen, L., G. Fimland, V. Eijsink, and J. Nissen-Meyer. 2000. Engineering increased stability in the antiMicrobiol peptide pediocin PA-1. Appl. Environ. Microbiol. 66: 4798-4802 https://doi.org/10.1128/AEM.66.11.4798-4802.2000
  9. Kim, W. J. 1993. Bacteriocins of lactic acid bacteria: Their potentials as food biopreservative. Food Rev. Int. 9: 299-313 https://doi.org/10.1080/87559129309540961
  10. Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39- 86
  11. Kwon, D. Y., M. Koo, C. R. Ryoo, C.-H. Kang, K.-H. Min, and W. J. Kim. 2002. Bacteriocin produced by Pediococcus sp, in kimchi and its characteristics. J. Microbiol. Biotechnol. 12: 96- 105
  12. Lee, H.-J., C.-S. Park, Y-J. Joo, S.-H. Kim, J.-H. Yoon, Y.-H. Park, I.-K. Hwang, J.-S. Anh, and T-I. Mheen. 1999. Identification and characterization of bacteriocin-producing lactic acid bacteria isolated from kimchi. J. Microbiol. Biotechnol. 9: 282- 291
  13. Lee, K. H., G. S. Moon. J. Y An, H. J. Lee, H. C. Chang, D. K. Chung, J. H. Lee, and J. H. Kim. 2002. Isolation of a nisin-producing Lactococcus lactis strain from kimchi and characterization of its nisZ gene. J. Microbiol. Biotechnol. 12: 389- 397
  14. Mah, J.-H., K.-S. Kim, J.-H. Park, M.-W. Byun, Y.-B.. Kim, and H.-J. Hwang. 2001. Bacteriocin with a broad antimicrobiol spectrum, produced by Bacillus sp. isolated from kimchi. J. Microbiol. Biotechnol. 11: 577- 584
  15. Makrides, S. C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512- 538
  16. Marugg, J. D., C. E Gonzalez, B. S. Kunka, A. M. Ledeboer, M. J. Pucci, M. Y. Toonen, S. A Walker, L. C. Zoetmulder, and P. A. Vandenbergh. 1992. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl. Environ. Microbiol. 58: 2360- 2367
  17. Mattick, A. T. R. and A. Hirsch. 1947. Further observations on an inhibitory substance (nisin) from lactic streptococci. Lancet 2: 5- 7
  18. Montville, T. J. and Y. Chen. 1998. Mechanistic action of pediocin and nisin: Recent progress and unresolved questions. Appl. Microbiol. Biotechnol. 50: 511- 519 https://doi.org/10.1007/s002530051328
  19. Moon, G. S., C. H. Chang, Y. R. Pyun, and W. J. Kim. 2004. Isolation, identification, and characterization of a bacteriocinproducing Enterococcus sp. from kimchi and its application to kimchi fermentation. J. Microbiol. Biotechnol. 14: 924-931
  20. Moon, G. S., J. J. Jeong. G. E. Ji, J. S. Kim, and J. H. Kim. 2000. Characterization of a bacteriocin produced by Enterococcus sp. T7 isolated from humans. J. Microbiol. Biotechnol. 10: 507-513
  21. Moon, G.-S., W. J. Kim, and M. Kim. 2002. Synergistic effects of .bacteriocin-producing Pediococcus acidilactici K10 and organic acids on inhibiting Escherichia coli O157:H7 and applications in ground beef. J. Microbiol. Biotechnol. 12: 936- 942
  22. Motlagh, A., M. Bukhtiyarova, and B. Ray. 1994. Complete nucleotide sequence of pSMB 74, a plasmid encoding the production of pediocin AcH in Pediococcus acidilactici. Lett. Appl. Microbiol. 18: 305- 312 https://doi.org/10.1111/j.1472-765X.1994.tb00876.x
  23. Nes. I. F., D. B. Diep, L. S. Havarstein, M. B. Brurberg, V. Eijsink, and H. Holo. 1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek 70: 113- 128 https://doi.org/10.1007/BF00395929
  24. Nes, I. F. and H. Holo. 2000. Class II antimicrobiol peptides from lactic acid bacteria. Biopolymers (Peptide Science) 55: 50-61 https://doi.org/10.1002/1097-0282(2000)55:1<50::AID-BIP50>3.0.CO;2-3
  25. O'Sullivan, D. J. and T. R. Klaenhammer. 1993. Rapid miniprep isolation of high-quality plasmid DNA from Lactococcus and Lactobacillus spp. Appl. Environ. Microbiol. 59: 2730-2733
  26. Ray, B. and M. Daeschel, 1992. Food Biopreservatives or Microbiol Origin, pp. 64- 70. CRC Press, Boca Raton, Florida, U.S.A
  27. Ray, B., R. Schamber, and K. W. Miller. 1999. The pediocin AcH precursor is biologically active. Appl. Environ. Microbiol. 65: 2281- 2286
  28. Richard, C., D. Drider, K. Elmorjani, D. Marion, and H. Prevost. 2004. Heterologous expression and purification of active divercin V41, a class IIa bacteriocin encoded by a synthetic gene in Escherichia coli. J. Bacteriol. 186: 4276-4284 https://doi.org/10.1128/JB.186.13.4276-4284.2004
  29. Rogers, L. A. 1928. The inhibitory effect of Streptococcus lactis on Lactobacillus bulgaricus. J. Bacteriol. 16: 321-325
  30. Schagger, H. and G. V. Jagow. 1987. Tricine-sodiurn dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368- 379 https://doi.org/10.1016/0003-2697(87)90587-2
  31. Tagg, J. R., A. S. Dajani, and L. W. Wannamaker. 1976. Bacteriocins of Gram-positive bacteria. Bacteriol. Rev. 40: 722-756
  32. Venema, K., J. Kok, J. D. Marugg, M. Y. Toonen, A. M. Ledeboer, G. Venema, and M. L. Chikindas. 1995. Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1.0: PedB is the immunity protein and PedD is the precursor processing enzyme. Mol. Microbiol. 17: 515-522 https://doi.org/10.1111/j.1365-2958.1995.mmi_17030515.x
  33. Whitehead, H. R. 1933. A substance inhibiting bacterial growth produced by certain strains of lactis streptococci. Biochem. J. 27: 1793- 1800 https://doi.org/10.1042/bj0271793