Genetic Organization of a 50-kb Gene Cluster Isolated from Streptomyces kanamyceticus for Kanamycin Biosynthesis and Characterization of Kanamycin Acetyltransferase

  • ZHAO XIN QING (Department of Biological Science and Institute of Bio-Science and Biotechnology, Myong Ji University) ;
  • KIM KYOUNG ROK (Department of Biological Science and Institute of Bio-Science and Biotechnology, Myong Ji University) ;
  • SANG LI WEI (Department of Biological Science and Institute of Bio-Science and Biotechnology, Myong Ji University) ;
  • KANG SUK HO (Department of Biological Science and Institute of Bio-Science and Biotechnology, Myong Ji University) ;
  • YANG YOUNG YELL (Department of Biological Science and Institute of Bio-Science and Biotechnology, Myong Ji University) ;
  • SUH JOO WON (Department of Biological Science and Institute of Bio-Science and Biotechnology, Myong Ji University)
  • Published : 2005.04.01

Abstract

A 50-kb chromosome DNA region was isolated from Streptomyces kanamyceticus by screening the fosmid genomic library, using the 16S rRNA methylase gene (kmr) as a probe. Sequence analysis of this region revealed 42 putative open reading frames (ORFs), which included biosynthetic genes such as genes responsible for 2-deoxystreptamine (2­DOS) biosynthesis as well as genes for resistance and regulatory function. Also, the kanamycin acetyltransferase gene (kac) was characterized by in vitro enzyme assay, which conferred E. coli BL21 (DE3) with 10, 50, and 80-times higher resistance to kanamycin A, tobramycin, and amikacin, respectively, than the control strain had, thus strongly indicating that the isolated gene cluster is very likely involved in kanamycin biosynthesis. This work provides a solid basis for further elucidation of the kanamycin biosynthesis pathway as well as the productivity improvement and construction of new hybrid antibiotics.

Keywords

References

  1. Ahlert, J., J. Distler, K. Mansouri, and W. Piepersberg. 1997. Identification of stsC, the gene encoding the L-glutamine:scyllo-inosose aminotransferase from Streptomycinproducing Streptomycetes. Arch. Microbiol. 168: 102- 113 https://doi.org/10.1007/s002030050475
  2. Arakawa, K., R. Muller, T. Mahmud, T. W. Yu, and H. G. Floss. 2002. Characterization of the early stage aminoshikimate pathway in the formation of 3-amino-5-hydroxybenzoic acid: The RifN protein specifically converts kanosamine into kanosamine 6-phosphate. J. Am. Chem. Soc. 124: 10644-10645 https://doi.org/10.1021/ja0206339
  3. Carpet, F. 1988. Multiple sequence alignment with hierarchical clustering. Nucl. Acids Res. 16: 10881-10890 https://doi.org/10.1093/nar/16.22.10881
  4. Demydchuk, J., Z. Oliynyk, and V. Fedorenko. 1998. Analysis of a kanamycin resistance gene (kmr) from Streptomyces kanamvceticus and a mutant with increased arninoglycoside resistance. J. Basic Microbiol. 38: 231- 239 https://doi.org/10.1002/(SICI)1521-4028(199809)38:4<231::AID-JOBM231>3.0.CO;2-W
  5. Distler, J., A. Ebert, K. Mansouri, K. Pissowotzki, M. Stockmann, and W. Piepersberg. 1987. Gene cluster for streptomycin biosynthesis in Streptomyces griseus: Nucleotide sequence of three genes and analysis of transcriptional activity. Nucl. Acids Res. 15: 8041- 8056 https://doi.org/10.1093/nar/15.19.8041
  6. Distler, J., K. Mansouri, G. Mayer, M. Stockmann, and W. Piepersberg. 1992. Streptomycin biosynthesis and its regulation in Streptomycetes. Gene 115: 105-111 https://doi.org/10.1016/0378-1119(92)90547-3
  7. Hashimoto, M., T. Kondo, I. Kozone, H. Kawaide, H. Abe, and M. Natsume. 2003. Relationship between respond to and production of aerial mycelium-inducing substances pamymycin 607 and A-factor. Biosci. Biotech. Biochem. 67: 803- 808 https://doi.org/10.1271/bbb.67.803
  8. He, X. M. and H.W. Liu. 2002. Formation of unusual sugars: Mechanistic studies and biosynthetic applications. Annu. Rev. Biochem. 71: 701- 754 https://doi.org/10.1146/annurev.biochem.71.110601.135339
  9. Huang, F. L., Y. Y. Li, J. Q. Yu, and J. B. Spencer. 2002. Biosynthesis of aminoglycoside antibiotics: Cloning, expression and characterization of an aminotransferase involved in the pathway to 2-deoxystreptamine. Chem. Commun. 2860-2861
  10. Hyun, C. G., J. W. Kim, J. J. Han, Y. N. Choi, and J. W. Suh. 1998. Cloning and sequence analysis of the aminoglycoside resistance gene from a nebramycin complex producer, Streptoalloteichus hindustanus. J. Microbiol. Biotechnol. 8: 146-151
  11. Hyun, C. G., S. S. Kim, J. K. Sohng, J. J. Hahn, J. W. Kim, and J. W. Suh. 2000. An efficient approach for cloning the dNDP-glucose synthase gene from actinomycetes and its application in Streptomyces spectabills, a spectinomycin producer. FEMS Microbiol. Lett. 183: 183- 189 https://doi.org/10.1111/j.1574-6968.2000.tb08955.x
  12. Ikeno, S., D. Aoki, M. Hamada, M. Hori, and K. S. Tsuchiya. 2002. kasT gene of Streptomyces kasugaensis M38-M1 encodes a DNA-binding protein which binds to intergenic region of kasU-kasJ in the kasugarnycin biosynthesis gene cluster. J. Antibiotics 5: 1053- 1062
  13. Ishikawa, J. and K. Hotta. 1999. FramePlot: A new implementation of the Frame analysis for predicting proteincoding regions in bacterial DNA with a high G+C content. FEMS Microhiol. Lett. 174: 251- 253 https://doi.org/10.1111/j.1574-6968.1999.tb13576.x
  14. Jo, Y. Y., S. H. Kim, Y. Y. Yang, C. M. Kang, J. K. Sohng, and J. W. Suh. 2003. Functional analysis of spectinomycin biosynthetic genes from Streptomyces spectabilis ATCC 27741. J. Microbiol, Biotechnol. 13: 906- 912
  15. Joe, Y. A. and Y. M. Goo. 1998. Kanamycin acetyl transferase gene fom kanamycin-producing Streptomyces kanamyceticus IFO 13414. Arch. Pharm. Res. 21: 470- 474 https://doi.org/10.1007/BF02974645
  16. Jung, Y. G., S. H. Kang, C. G. Hyun, Y. Y. Yang, C. M. Kang, and J. W. Suh. 2003. Isolation and characterization of bluensomycin biosynthetic genes from Streptomyces bluensis. FEMS Microbiol. Lett. 219: 285- 289 https://doi.org/10.1016/S0378-1097(03)00019-3
  17. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, England
  18. Kharel, M. K., D. B. Basnet, H. C. Lee, K. K. Liou, J. S. Woo, B. G. Kim, and J. K. Sohng. 2004. Isolation and characterization of the tobramycin biosynthetic gene cluster from Streptomyces tenebrarius. FEMS Microbiol. Lett. 230: 185- 190 https://doi.org/10.1016/S0378-1097(03)00881-4
  19. Kharel, M. K., S. Bimala, H. C. Lee, K. K. Liou, J. S. Woo, D. H. Kim, and J. K Sohng. 2003. Identification of 2Deoxy-scyllo-inosose synthase in aminoglycoside producer Streptomyces. J. Microbiol. Biotechnol. 13: 828- 831
  20. Kondo, S. and K. Hotta. 1998. Semisynthetic aminoglycoside antibiotics: Development and enzymatic modification. J. Infect. Chemother. 5: 1- 9
  21. Kwon, H. J., S. Y. Lee, S. K. Hong, U. M. Park, and J. W. Suh. 1999. Heterologous expression of Streptomyces albus genes linked to an integrating element and their roles in regulation of antibiotic production. J. Microbiol. Biotechnol. 9: 488- 497
  22. Lee, H. C., J. Y. Sohge, H. J. Kim, D. Y. Nam, C. N. Seong, J. M. Han, and J. C. Yoo. 2004. Cloning, expression, and biochemical characterization of dTDP-glucose 4,6-dehydratase gene (gerE) from Streptomyces sp. GERI-155. J. Microbiol. Biotechnol. 14: 576- 583
  23. Magnet, S., T. A. Smith, R. J. Zheng, P. Nordmann, and J. S. Blanchard. 2003. Aminoglycoside resistance resulting from tight drug binding to an altered arninoglycoside acetyltransferase. Antimicrob. Agents Chemother. 47: 1577-1583 https://doi.org/10.1128/AAC.47.5.1577-1583.2003
  24. Mingeot-Leclercq, M. P., Y. Glupczynski, and P. M. Tulkens, 1997. Aminoglycosides: Activity and resistance. Antimicrob. Agents Chemother. 43: 727- 737
  25. Nakano, M. M., H. Mashiko, and H. Ogawara. 1984. Cloning of the kanamycin resistance gene from a kanamycin producing Streptomyces species. J. Bacteriol. 157: 79- 83
  26. Nedal, A. and S. B. Zotchev. 2004. Biosynthesis of deoxyaminosugars in antibiotic-producing bacteria. Appl. Microbiol, Biotechnol. 64: 7- 15 https://doi.org/10.1007/s00253-003-1535-9
  27. Okuda, T. and Y. Ito. 1982. Biosynthesis and mutasynthesis of aminoglycoside antibiotics, pp. 154- 159. In H. Umezawa and I. R. Hooper (eds.), Aminoglycoside Antibiotics. SpringerVerlag, Berlin, Heidelberg, New York, U.S.A
  28. Ota, Y., H. Tamegai, F. Kudo, H. Kuriki, A. Koike-Takesida, T. Eguchi, and K. Kakinuma. 2000. Butirosin-biosynthetic gene cluster from Bacillus circulans. J. Antibiot. 53: 1158-1167 https://doi.org/10.7164/antibiotics.53.1158
  29. Piepersberg, W. 1997. Molecular biology, biochemistry and fermentation of aminoglycoside antibiotics, pp. 81- 163. In Strohl, W. R., Marcel-Dekker (eds.), Biotechnology of Antibiotics, Springer-Verlag Berlin Heidelberg, New York, U.S.A
  30. Recht, M. I., S. Douthwaite, and J. D. Puglisi. 1999. Basis for prokaryotic specificity of action of aminoglycoside antibiotics. EMBO J. 18: 3133- 3138 https://doi.org/10.1093/emboj/18.11.3133
  31. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning, A Laboratory Manual. 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A
  32. Shaw, K. J., P. N. Rather, R. S. Hare, and G. G. Miller. 1993. Molecular genetics of arninoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57: 138- 16