Staphylococcus aureus Siderophore-Mediated Iron-Acquisition System Plays a Dominant and Essential Role in the Utilization of Transferrin-Bound Iron

  • Published : 2005.04.01

Abstract

Staphylococcus aureus is known to be capable of utilizing transferrin-bound iron, via both siderophore­and transferrin-binding protein (named IsdA)-mediated iron-acquisition systems. This study was designed in order to determine which iron-acquisition system plays the essential or dominant role with respect to the acquisition of iron from human transfenin, in the growth of S. aureus. Holotransferrin (HT) and partially iron-saturated transferrin (PT), but not apotransferrin (AT), were found to stimulate the growth of S. aureus. S. aureus consumed most of the transferrin-bound iron during the exponential growth phase. Extracellular proteases were not, however, involved in the liberation of iron from transferrin. Transferrin-binding to the washed whole cells via IsdA was not observed during the culture. The expression of IsdA was observed only in the deferrated media with AT, but not in the media supplemented with PT or HT. In contrast, siderophores were definitely produced in the deferrated media with PT and HT, as well as in the media supplemented with AT. The siderophores proved to have the ability to remove iron directly from transferrin, but the washed whole cells expressing IsdA did not. In the bioassay, the growth of S. aureus on transferrin-bound iron was stimulated by the siderophores alone. These results demonstrate that the siderophore-mediated iron-acquisition system plays a dominant and essential role in the uptake of iron from transferrin, whereas the IsdA-mediated iron-acquisition system may play only an ancillary role in the uptake of iron from transferrin.

Keywords

References

  1. Andrews, S.C., A.K. Robinson, and F. Rodriguez-Quinones. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215-237 https://doi.org/10.1016/S0168-6445(03)00055-X
  2. Braun, V. and M. Barun. 2002. Active transport of iron and siderophore antibiotics. Curr. Opin. Microbiol. 5, 194-201 https://doi.org/10.1016/S1369-5274(02)00298-9
  3. Brock, J.H., P.H. Williams, J. Liceaga, and K.G. Woolridge. 1991. Relative availability of transferrin-bound iron and cell-driven iron to aerobactin-producing and enterochelin-producing strains of Escherichia coli and to other microorganisms. Infect. Immun. 59, 3185-3190
  4. Brown, J.S. and D.W. Holden. 2002. Iron acquisition by Gram-positive bacterial pathogens. Microbes Infect. 4, 1149-1156 https://doi.org/10.1016/S1286-4579(02)01640-4
  5. Bullen, J., E. Griffiths, H. Rogers, and G. Ward. 2002. Sepsis: the critical role of iron. Microbes Infect. 2, 409-415 https://doi.org/10.1016/S1286-4579(00)00326-9
  6. Cabrera, G., A. Xiong, M. Uebel, V.K. Singh, and R.K. Jayaswal. 2001. Molecular characterization of the iron-hydroxamate uptake system in Staphylococcus aureus. Appl. Environ. Microbiol. 67, 1001-1003 https://doi.org/10.1128/AEM.67.2.1001-1003.2001
  7. Clarke, S.R., M.D. Wiltshire, and S.J. Foster. 2004. IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesion. Mol. Microbiol. 51, 1509-1519 https://doi.org/10.1111/j.1365-2958.2003.03938.x
  8. Conrad, M.E. 2001. Iron: seminal publications of the twentieth century-transferrin. J. Tra. Ele. Exp. Med. 14, 115-117 https://doi.org/10.1002/jtra.1018
  9. Courcol, R.J., D. Trivier, M.C. Bissinger, G.R. Martin, and M.R. Brown. 1997. Siderophore production by Staphylococcus aureus and identification of iron-regulated proteins. Infect. Immun. 65, 1944-1948
  10. Crosa, J .H. 1997. Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol. Mol. Biol. Rev. 61, 319-336
  11. Dale, S.E., A. Doherty-Kirby, G. Lajoie and D.E. Heinrichs. 2004. Role of siderophore biosynthesis in virulence of Staphylococcus aureus: Identification and characterization of genes involved in production of a siderophore. Infect. Immun. 72, 29-37 https://doi.org/10.1128/IAI.72.1.29-37.2004
  12. Drechsel, H., S. Freund, G. Nicholson, H. Haag, O. Jung, H. Zahner, and G. Jung. 1993. Purification and chemical characterization of staphyloferrin B, a hydrophilic siderophore from staphylococci. Biometals 6, 185-192
  13. Dryla, A., D. Gelbmann, A. Von Gabain, and E. Nagy. 2003. Identification of a novel iron regulated staphylococcal surface protein with haptoglobulin-hemoglobin binding activity. Mol. Microbiol. 49, 37-53 https://doi.org/10.1046/j.1365-2958.2003.03542.x
  14. Emori, T.G and R.P. Gaynes. 1993. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin. Microbiol. Rev. 6, 428-442
  15. Konetschny-Rapp, S., G. Jung, J. Meiwes, and H. Zahner. 1990. Staphyloferrin A: a structurally new siderophore from staphylococci. Eur. J. Biochem. 191, 65-74 https://doi.org/10.1111/j.1432-1033.1990.tb19094.x
  16. Leong, S.A. and J.B. Neilands. 1982. Siderophore production by phytopathogenic microbial species. Arch. Biochem. Biophys. 218, 351-359 https://doi.org/10.1016/0003-9861(82)90356-3
  17. Lim, Y., S.H. Shin, I.Y. Jang, J.H. Rhee, and I.S. Kim. 1998. A human transferrin-binding protein of Staphylococcus aureus is immunogenic in vivo and has an epitope in common with human transferrin receptor. FEMS Microbiol. Lett. 166, 225-230 https://doi.org/10.1111/j.1574-6968.1998.tb13894.x
  18. Lim, Y., S.H. Shin, S.I. Lee, I.S. Kim, and J.H. Rhee. 1998. Ironrepressibility of siderophore and transferrin-binding protein in Staphylococccus aureus. FEMS Microbiol. Lett. 163, 19-24
  19. Lim, Y., S.Y. Cho, N.S. Cho, S.I. Lee, J.Y. Chung, C.H. Chung, and S.H. Shin. 2004. Oxygen stimulates the expression of ironrepressible high-affinity iron-uptake systems of Staphylococcus aureus-Application of CAS agar diffusion assay. Infection and Chemotherapy 36, 32-39
  20. Lindsay, J.A. and T.V. Riley. 1994. Staphylococcal iron requirements, siderophore production, and iron-regulated protein expression. Infect. Immun. 62, 2309-2314
  21. Lindsay, J.A., T.V. Riley, and B.J. Mee. 1995. Staphylococcus aureus but not Staphylococcus epidermidis can acquire iron from transferrin. Microbiology 141, 197-203 https://doi.org/10.1099/00221287-141-1-197
  22. Makey, D.G. and U.S. Seal. 1988. The detection of four molecular forms of human transferrin during the iron binding process. Biochem. Biophys. Acta 453, 250-256
  23. Martinaho, S., L. von Bonsdorff, A. Rouhiainen, M. Lonnroth and J. Parkkinen. 2001. Dependence of Staphylococcus epidermidis on non transferrin-bound iron for growth. FEMS Microbiol. Lett. 196, 177-182 https://doi.org/10.1111/j.1574-6968.2001.tb10561.x
  24. Mazmanian, S.K., E.P. Skaar, A.H. Gaspar, M. Humayun, P. Gornicki, J. Jelenska, A. Joachmiak, D.M. Missiakas, and O. Schneewind. 2003. Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299, 906-909 https://doi.org/10.1126/science.1081147
  25. Modun, B.J., A. Cockayne, R. Finch, and P. Williams. 1998. The Staphylococcus aureus and Staphylococcus epidermidis transferrin-binding proteins are expressed in vivo during infection. Microbiology 144, 1005-1012 https://doi.org/10.1099/00221287-144-4-1005
  26. Modun, B., D. Kendall, and P. Williams. 1994. Staphylococci express a receptor for human transferrin: Identification of a 42-kilodalton cell wall transferrin-binding protein. Infect. Immun. 62, 3850-3858
  27. Modun, B. and P. Williams. 1999. The staphylococcal transferrinbinding protein is a cell wall glyceraldehydes-3-phosphate dehydrogenase. Infect. Immun. 67, 1086-1092
  28. Modun, B., R.W. Evans, C.L. Joannou, and P. Williams. 1998. Receptor-mediated recognition and uptake of iron from human transferrin by Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 66, 3591-3596
  29. Morrissey, J.A., A. Cockayne, P.J. Hill, and P. Williams. 2000. Molecular cloning and analysis of a putative siderophore ABC transporter from Staphylococcus aureus. Infect. Immun. 68, 6281-6288 https://doi.org/10.1128/IAI.68.11.6281-6288.2000
  30. Okuzo, N., T. Akiyama, S. Miyoshi, S. Shinoda, and S. Yamamoto. 1996. Involvement of vulnibactin and exocellular protease in utilization of transferrin-and lactoferrin-bound iron by Vibrio vulnificus. Microbiol. Immunol. 40, 595-598
  31. Park, R.Y., H.Y. Sun, M.H. Choi, Y.H. Bae, and S.H. Shin. 2005. Growth of Staphylococcus aureus with defective siderophore production in human peritoneal dialysate solution. J. Microbiol. 43, 54-61
  32. Potempa, J., A. Dubin, G. Korzus, and J. Travis. 1988. Degradation of elastin by a cysteine proteinase from Staphylococcus aureus. J. Biol. Chem. 263, 2664-2667
  33. Ratledge, C. and L. Dover. 2000. Iron metabolism in pathogenic bacteria, Ann. Rev. Microbiol. 54, 881-941 https://doi.org/10.1146/annurev.micro.54.1.881
  34. Rybak, M.J. and R.L. Akins. 2001. Emergence of methicillin-resistant Staphylococcus aureus with intermediate glycopeptide resistance: clinical significance and treatment options. Drugs 61, 1-7
  35. Schwyn, B. and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47-56 https://doi.org/10.1016/0003-2697(87)90612-9
  36. Sebulsky, M.T. and D.E. Heinrichs. 2001. Identification and characterization of fhuD1 and fhuD2, two genes involved in ironhydroxamate uptake in Staphylococcus aureus. J. Bacteriol. 183, 4994-5000 https://doi.org/10.1128/JB.183.17.4994-5000.2001
  37. Sebulsky, M.T., D. Hohnstein, M.D. Hunter, and D.E. Heinrichs. 2000. Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus. J. Bacteriol. 182, 4394-4400 https://doi.org/10.1128/JB.182.16.4394-4400.2000
  38. Shin, S.H., Y. Lim, S.E. Lee, N.W. Yang, and J.H. Rhee. 2001. CAS agar diffusion assay for the measurement of siderophores in biological fluids. J. Microbiol. Methods 44, 89-95 https://doi.org/10.1016/S0167-7012(00)00229-3
  39. Sieradzki, K., R.B. Roberts, S.W. Haber, and A.Tomasz. 1999. The development of vancomycin resistance in a patient with methicillin- resistant Staphylococcus aureus infection. N. Engl. J. Med. 340, 517-523 https://doi.org/10.1056/NEJM199902183400704
  40. Skaar, E.P. and O. Schneewind. 2004. Iron-regulated surface determinants (Isd) of Staphylococcus aureus: stealing iron from heme. Microbes Infect. 6, 390-397 https://doi.org/10.1016/j.micinf.2003.12.008
  41. Taylor, J.M. and Heinrichs, D.E. (2002) Transferrin binding in Staphylococcus aureus: involvement of a cell wall-anchored protein. Mol. Microbiol. 43, 1603-1614 https://doi.org/10.1046/j.1365-2958.2002.02850.x
  42. Trivier, D. and R.J. Courcol. 1996. Iron depletion and virulence in Staphylococcus aureus. FEMS Microbiol. Lett. 141, 117-127 https://doi.org/10.1111/j.1574-6968.1996.tb08373.x
  43. Xiong, A., V.K. Singh, G. Cabrera, and R.K. Jayaswal. 2000. Molecular characterization of the ferric-uptake regulator, Fur, from Staphylococcus aureus. Microbiology 146, 659-668