Molecular Characterization of TEM-type $\beta$-Lactamases Identified in Cold-Seep Sediments of Edison Seamount (South of Lihir Island, Papua New Guinea)

  • Song Jae Seok (Department of Biological Sciences, Myongji University) ;
  • Jeon Jeong Ho (Marine Biotechnology Center, Korea Ocean Research & Development Institute) ;
  • Lee Jung Hun (Department of Biological Sciences, Myongji University, Marine Biotechnology Center, Korea Ocean Research & Development Institute) ;
  • Jeong Seok Hoon (Department of Laboratory Medicine, Kosin University College of Medicine) ;
  • Jeong Byeong Chul (Department of Biological Sciences, Myongji University) ;
  • Kim Sang Jin (Marine Biotechnology Center, Korea Ocean Research & Development Institute) ;
  • Lee Jung Hyun (Marine Biotechnology Center, Korea Ocean Research & Development Institute) ;
  • Lee Sang Hee (Department of Biological Sciences, Myongji University)
  • Published : 2005.04.01

Abstract

To determine the prevalence and genotypes of $\beta$-lactamases among clones of a metagenomic library from the cold-seep sediments of Edison seamount (10,000 years old), we performed pulse-field gel electrophoresis, antibiotic susceptibility testing, pI determination, and DNA sequencing analysis. Among the 8,823 clones of the library, thirty clones produced $\beta$-lactamases and had high levels of genetic diversity. Consistent with minimum inhibitory concentration patterns, we found that five ($167\%$) of thirty clones produced an extended-spectrum $\beta$-lactamase. 837- and 259-bp fragments specific to bla$_{TEM}$ genes were amplified, as determined by banding patterns of PCR amplification with designed primers. TEM­1 was the most prevalent $\beta$-lactamase and conferred resistance to ampicillin, piperacillin, and cephalothin. TEM-116 had a spectrum that was extended to ceftazidime, cefotaxime, and aztreonam. The resistance levels conferred by the pre-antibiotic era alleles of TEM-type $\beta$-lactamases were essentially the same as the resistance levels conferred by the TEM-type alleles which had been isolated from clinically resistant strains of bacteria of the antibiotic era. Our first report on TEM-type $\beta$-lactamases of the pre-antibiotic era indicates that TEM-type $\beta$-lactamases paint a picture in which most of the diversity of the enzymes may not be the result of recent evolution, but that of ancient evolution.

Keywords

References

  1. Amann, R.I., W. Ludwig, and K.H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 95, 143-169
  2. Ambler, R.P. 1980. The structure of $\beta$-Iactamases. Philos. Trans. R. Soc. Land B. Biol. Sci. 289, 321-331 https://doi.org/10.1098/rstb.1980.0049
  3. Barlow, M. and B.G. Hall. 2002. Origin and evolution of the AmpC $\beta$-Iactamases of Citrobacter freundii. Antimicob. Agents Chemother. 46, 1190-1198 https://doi.org/10.1128/AAC.46.5.1190-1198.2002
  4. Datta, N. and P. Kontomichalou. 1965. Penicillinase synthesis controlled by infectious R factors in Enterobacteriacae. Nature 208, 239-241 https://doi.org/10.1038/208239a0
  5. DuBois, S.K., M.S. Marriott, and S.G.B. Amyes.1995. TEM- and SHV-derived extended-spectrum $\beta$-Iactamase: relationship between selection, structure and function. J. Antimicrob. Chemother. 35, 7-22 https://doi.org/10.1093/jac/35.1.7
  6. Giakkoupi, P., E. Tzelepi, P.T. Tassios, N.T. Legakis, and L.S. Tzouvelekis. 2000. Determinational effect of the combination of R164S with G238S in TEM-1 $\beta$-lactamase on the extendedspectrum activity conferring by each single mutation. J. Antimicrob. Chemother. 45, 101-104
  7. Hall B.G. and M. Barlow. 2004. Evolution of the serine $\beta$-lactamases: past, present and future. Drug Resist. Update. 7, 111-123 https://doi.org/10.1016/j.drup.2004.02.003
  8. Handelsman, J., M.R. Rondon, S.F. Brady, J. Clardy, and R.M. Goodman. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5, 245-249 https://doi.org/10.1016/S1074-5521(98)90108-9
  9. Hugenholtz, P. and N.R. Pace. 1996. Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotechnol. 14, 190-197 https://doi.org/10.1016/0167-7799(96)10025-1
  10. Hurt, R.A., X. Qiu, L. Wu, Y. Ro, A.V. Palumbo, J.M. Tiedje, and J. Zhou. 2001. Simultaneous recovery of RNA and DNA from soils and sediments. Appl. Environ. Microbiol. 67, 4495-4503 https://doi.org/10.1128/AEM.67.10.4495-4503.2001
  11. Jeong, S.H., I.K. Bae, J.H Lee, S. G. Sohn, G.H. Kang, G.J. Jeon, Y.H. Kim, B.C. Jeong, and S.H. Lee. 2004. Molecular characterization of extended-spectrum $\beta$-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J. Clin. Microbiol. 42, 2209-2906 https://doi.org/10.1128/JCM.42.5.2209-2211.2004
  12. Lee, S.H., J.Y Kim, S.K. Lee, W. Jin, and K.J. Lee. 2000. Discriminatory detection of extended-spectrum $\beta$-lactamases by restriction fragment length dimorphism-polymerase chain reaction. Lett. Appl. Microbiol. 31,307-312 https://doi.org/10.1046/j.1472-765x.2000.00806.x
  13. Lee, S.H., J.Y. Kim, S.H. Shin, S.K. Lee, M.M. Choi, I.Y. Lee, Y.B. Kim, J.Y. Cho, W. Jin, and K.J. Lee. 2001. Restriction fragment length dimorphism-PCR method for the detection of extendedspectrum $\beta$-lactamases unrelated to TEM- and SHV-types. FEMS Microbiol. Letters 200:157-161
  14. Lee, S.H., J.Y. Kim, S.H. Shin, Y.J. An, Y.W. Choi, Y.C. Jung, H.I. Jung, E.S. Sohn, S.H. Jeong, and K.J. Lee. 2003. Dissemination of SHV-12 and characterization of new AmpC-type $\beta$-lactamase genes among clinical isolates of Enterobacter species in Korea. J. Clin. Microbiol. 41, 2477-2482 https://doi.org/10.1128/JCM.41.6.2477-2482.2003
  15. Lee, S.H., H.-R. Oh, J.-H. Lee, S.-J. Kim, and J.-C. Cho. 2004. Cold-seep sediment harbors phylogentically diverse uncultured bacteria. J. Microbiol. Biotechnol. 14, 906-913
  16. Livermore, D.M. 1995. $\beta$-lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8, 557-584
  17. Medeiros, A.A. 1997. Evolution and dissemination of $\beta$-lactamases accelerated by generations of $\beta$-lactams. Clin. Infect. Dis. 24, SI9-S45 https://doi.org/10.1093/clinids/24.Supplement_1.S9
  18. National Committee for Clinical laboratory Standards (NCCLS). 2000. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, fifth approved standards; M7-A5. NCCLS, Villanova, Pennsylvania
  19. Paterson, D.L., W.-C. Ko, A.V. Gottberg, J.M. Casellas, L. Mulazimoglu, K.P. Klugman, R.A. Bnomo, L.B. Rice, J.G. McCormack, and V.L. Yu. 2001. Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum $\beta$-lactamase: implications for the clinical microbiology laboratory, J. Clin. Microbiol. 39, 2206-2212 https://doi.org/10.1128/JCM.39.6.2206-2212.2001
  20. Raghukmar, C., S. Raghukumar, G. Sheelu, S.M. Gupta, B.N. Nath, and B.R. Rao. 2004. Buried in time: culturable fungi in a deepsea sediment core from the Chagos Trench, Indian Ocean. Deep-Sea Res. Part I-Oceanogr. Res. Pap. 51, 1759-1768
  21. Sambrook, J. and D. W. Russell. 2001. Molecular cloning: a laboratory manual, p. 1.40-1.41. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  22. Sanders, C.C. and W.E. Jr. Sanders. 1992. $\beta$-lactamase in gram-negative bacteria: global trends and clinical impact. Clin. Infect. Dis. 15, 824-839 https://doi.org/10.1093/clind/15.5.824
  23. Schimidt, M., R. Botz, K. Winn, P. Stoffers, O. Thiessen, and P. Herzig. 2002. Seeing hydrocarbons and related carbonate mineralisations in sediments sough of Lihir Island (New Ireland fore arc basin, Papua New Guinea). Chem. Geol. 186,249-264 https://doi.org/10.1016/S0009-2541(01)00419-3
  24. Tenover, F.C., R.D. Arbeit, R. V. Goering, P.A. Micklsen, B.E. Murray, D.H. Persing, and B. Swanminathan. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsedfield gel electrophoresis criteria for bacterial strain typing. J. Clin. Microbiol. 33, 2233-2239
  25. Wild, J., Z. Hradecna, and W. Szybalski. 2002. Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones. Genome Res. 12, 1434-1444 https://doi.org/10.1101/gr.130502
  26. Yan, J.J., S.M. Wu, S.H. Tasi, J.J. Wu, and I.J. Su. 2000. Prevalence of SHV-12 among clinical isolates of Klebsiella pneumoniae producing extended-spectrum $\beta$-lactamases and identification of a novel AmpC enzyme (CMY-8) in Southern Taiwan. Antimicob. Agents Chemother. 44, 1438-1442 https://doi.org/10.1128/AAC.44.6.1438-1442.2000