Archaeal Diversity in Tidal Flat Sediment as Revealed by 16S rDNA Analysis

  • Kim Bong Soo (School of Biological Sciences, Seoul National University) ;
  • Oh Huyn Myung (School of Biological Sciences, Seoul National University) ;
  • Kan Ho Jeong (Department of Environmental Science and Engineering, School of Engineering, Ewha Womans University) ;
  • Chun Jong Sik (School of Biological Sciences, Seoul National University)
  • Published : 2005.04.01

Abstract

During the past ten years, Archaea have been recognized as a widespread and significant component of marine picoplankton assemblages. More recently, the presence of novel archaeal phylogenetic lineages has been discovered in coastal marine environments, freshwater lakes, polar seas, and deep-sea hydrothermal vents. Therefore, we conducted an investigation into the archaeal community existing in tidal flat sediment collected from Ganghwa Island, Korea. Phylogenetic analysis of archaeal 16S rDNA amplified directly from tidal flat sediment DNA revealed the presence of two major lineages, belonging to the Crenarchaeota ($53.9\%$) and Euryarchaeota ($46.1\%$) phyla. A total of 102 clones were then sequenced and analyzed by comprehensive phylogenetic analysis. The sequences determined in our samples were found to be closely related to the sequences of clones which had been previously obtained from a variety of marine environments. Archaeal clones exhibited higher similarities ($83.25 - 100\%$) to sequences..from other environments in the public database than did those ($75.22 - 98.46\%$) of previously reported bacterial clones obtained from tidal flat sediment. The results of our study suggest that the archaeal community in tidal flat sediment is remarkably diverse.

Keywords

References

  1. Bano, N., S. Ruffin, B. Ransom, and J.T. Hollibaugh. 2004. Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarctic assemblages. Appl. Environ. Microbiol. 70,781-789 https://doi.org/10.1128/AEM.70.2.781-789.2004
  2. Barns, S.M., R.E. Fundyga, M. W. Jeffries, and N.R. Pace. 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad Sci. 91, 1609-1613
  3. Barns, S.M., C.F. Delwiche, J.D. Palmer, and N.R. Pace. 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl. Acad Sci. 93, 9188-9193
  4. Bintrim, S.B., T.J. Donohue, J. Handelsman, G.P. Roberts, and R.M. Goodman. 1997. Molecular phylogeny of archaea from soil. Proc. Natl. Acad. Sci. 94, 277-282
  5. Borneman, J. and E.W. Triplett. 1997. Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl. Environ. Microbiol. 63, 2647-2653
  6. Buckley, D.H., J.R. Graber, and T.M. Schmidt. 1998. Phylogenetic analysis of nonthermophilic members of the kingdom crenarchaeota and their diversity and abundance in soils. Appl. Environ. Microbiol. 64, 4333-4339
  7. Carling, P.A. 1982. Temporal and spatial variation in intertidal sedimentation rates. Sedimentol. 29, 17-23 https://doi.org/10.1111/j.1365-3091.1982.tb01705.x
  8. Chin, K.J., T. Lukow, and R. Conrad. 1999. Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Appl. Environ. Microbiol. 65, 2341-2349
  9. Cho, H.-B., J.-K. Lee, and Y.-K. Choi. 2003. The genetic diversity analysis of the bacterial community in groundwater by denaturing gradient gel electrophoresis (DGGE). J. Microbiol. 41, 327-334
  10. Chun, J., A. Huq, and R.R. Colwell. 1999. Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus. Appl. Environ. Microbiol. 65, 2202-2208
  11. DeLong, E.F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. 89, 5685-5689
  12. Eder, W., M. Schmidt, M. Koch, D. Garbe-Schonberg, and R. Huber. 2002. Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban deep, Red Sea. Environ. Microbiol. 4, 758-763 https://doi.org/10.1046/j.1462-2920.2002.00351.x
  13. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791 https://doi.org/10.2307/2408678
  14. Fuhrman, J.A., K. McCallum, and A.A. Davis. 1992. Novel major archaebacterial group from marine plankton. Nature 356, 148-149 https://doi.org/10.1038/356148a0
  15. Gro kopf, R., S. Stubner, and W. Liesack. 1998. Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl. Environ. Microbiol. 64, 4983-4989
  16. Hershberger, K.L., S.M. Barns, A.L. Reysenbach, S.C. Dawson, and N.R. Pace. 1996. Crenarchaeota in low-temperature terrestrial environments. Nature 384, 420
  17. Hinrichs, K.U., J.M. Hayes, S.P. Sylva, P.G. Brewer, and E.F. DeLong. 1999. Methane-consuming archaebacteria in marine sediments. Nature 398, 802-805 https://doi.org/10.1038/19751
  18. Holben, W.E., J.K. Jansso, B.K. Chelm, and J.M. Tiedje. 1988. DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl. Environ. Microbiol. 54, 703-711
  19. Huber, H., M.J. Hohn, R. Rachel, T. Fuchs, V.C. Wimmer, and K.O. Stetter. 2002. A new phylum of archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63-67 https://doi.org/10.1038/417063a
  20. Hugenholtz, P., B.M. Goebel, and N.R. Pace. 1998. Impact of culture- independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765-4774
  21. Hur, I. and J. Chun. 2004. A method for comparing multiple bacterial community structures from 16S rDNA clone library sequences. J. Microbiol. 42, 9-13
  22. Hurst, C.J. 1997. Recovery of bacterial community DNA from soil, p. 433-434. In CJ. Hurst, R.L. Crawford, G.R. Knudsen, M.J. McInerney, and L.D. Stetzenbach (eds.), Manual of Environmental Microbiology, 2nd ed. American Society for Microbiology, Washington D.C
  23. Inagaki, F., M. Suzuki, K. Takai, and K. Horikoshi. 2003. Microbial communtiy structure in subseafloor sediments from the sea of Okhotsk. Appl. Environ. Microbiol. 69, 7224-7235 https://doi.org/10.1128/AEM.69.12.7224-7235.2003
  24. Jukes, T.H. and C.R. Cantor. 1969. Evolution of protein molecules, p. 21-132. In H.N. Munro (ed.), Mammalian protein metabolism. Academic Press, New York
  25. Jurgens, G., K. Lindstrom, and A. Saano, 1997. Novel group within the kingdom crenarchaeota from boreal forest soil. Appl. Environ. Microbiol. 63, 803-805
  26. Jurgens, G., F. Glockner, R. Amann, A. Saano, L. Montonen, M. Likolammi, and U. Munster. 2000. Identification of novel archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization(1). FEMS Microbial. Ecol. 34, 45-56
  27. Kim, B.S., H.-M. OH, H. Kang, S.-S. Pack, and J. Chun. 2004. Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14, 205-211
  28. Klute, A 1986. Part 1: Physical and mineralogical methods, p. 383-409. In A. Klute (ed.), Methods of soil analysis, 2nd ed. American Society of Agronomy, Madison, Wisconsin
  29. Lee, J.-H., H.-H. Shin, D.-S. Lee, K.K. Kwon, S.-J. Kim, and H.K. Lee. 1999. Bacterial diversity of culturable isolates from seawater and a marine coral, Plexauridae sp., near Mun-Sum, Cheju-Islnd. J. Microbiol. 37, 193-199
  30. Lovely, D.R., D.F. Dwyer, and M.J. Klug. 1982. Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Appl. Environ. Microbiol. 43, 1373-1379
  31. Maidak, B.L., G.J. Olsen, N. Larsen, R. Overbeek, M.J. McCaughey, and C.R. Woese. 1997. The RDP (Ribosomal Database Project). Nucleic Acids Res. 25, 109-111 https://doi.org/10.1093/nar/25.1.109
  32. Massana, R., A.E. Murray, C.M. Preston, and E.E DeLong. 1997. Vertical distribution and phylogenetic characterization of marine planktonic archaea in the Santa Barbara channel. Appl. Environ. Microbiol. 63, 50-56
  33. Massana, R., E.F. DeLong, and C. Pedros-Alio. 2000. A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Appl. Environ. Microbiol. 66, 1777-1787 https://doi.org/10.1128/AEM.66.5.1777-1787.2000
  34. McInerney, J.O., M. Wilkinson, J.W. Patching, T.M. Embley, and R. Powell. 1995. Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deep-sea deposit feeder. Appl. Environ. Microbiol. 61, 1646-1648
  35. Munson, M.A., D.B. Nedwell, and T.M. Embley. 1997. Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh. Appl. Environ. Microbiol. 63, 4729-4733
  36. Nedwell, D.B. 1984. The input and mineralization of organic carbon in anaerobic aquatic sediments. Adv. Microb. Ecol. 7, 93-130
  37. Oremland, R.S. and S. Polcin. 1982. Methanogenesis and sulfate reduction: competitive and non-competitive substrates in estuarine sediments. Appl. Environ. Microbiol. 44, 1270-1276
  38. Orphan, V.J., L.T. Taylor, D. Hafenbradl, and E.F. Delong. 2000. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl. Environ. Microbiol. 66, 700-711 https://doi.org/10.1128/AEM.66.2.700-711.2000
  39. Preston, C.M., K.Y. Wu, T.F Molinski, and E.F. Delong. 1996. A psychrophilic crenarchaeon inhabits a marine sponge: Crenarchaeum symbiosum gen. nov., sp. nov. Proc. Natl. Acad. Sci. 93, 6241-6246
  40. Reed, D.W., Y. Fujita, M.E. Delwiche, D.B. Blackwelder, P.P. Sheridan, T. Uchida, and F.S. Colwell. 2002. Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl. Environ. Microbiol. 68, 3759-3770 https://doi.org/10.1128/AEM.68.8.3759-3770.2002
  41. Reysenbach, A.L., K. Longnecker, and J. Kirshtein. 2000. Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl. Environ. Microbiol. 66, 3798-3806 https://doi.org/10.1128/AEM.66.9.3798-3806.2000
  42. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4,406-425
  43. Sandaa, R.A., O. Enger, and V. Torsvik. 1999. Abundance and diversity of Archaea in heavy-metal-contaminated soils. Appl. Environ. Microbiol. 65, 3293-3297
  44. Sessitsch, A., A. Weilharter, M.H. Gerzabek, H. Kirchmann, and E. Kandeler. 2001. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl. Environ. Microbiol. 67,4215-4224 https://doi.org/10.1128/AEM.67.9.4215-4224.2001
  45. Stein, L.Y., G Jones, B. Alexander, K Elmund, C. Wright-Jones, and K.H. Nealson. 2002. Intriguing microbial diversity associated with metal-rich particles from a freshwater reservoir. FEMS Microbiol. Ecol. 42,431-440 https://doi.org/10.1111/j.1574-6941.2002.tb01032.x
  46. Takai, K. and K Horikoshi. 1999a. Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152, 1285-1297
  47. Takai, K and K. Horikoshi. 1999b. Molecular phylogenetic analysis of archaeal intron-containing genes coding for rRNA obtained from a deep-subsurface geothermal water pool. Appl. Environ. Microbiol. 65, 5586-5589
  48. Takai, K., D.P. Moser, M. DeFlaun, T.C. Onstott, and J.K Fredrickson. 2001. Archaeal diversity in waters from deep South African gold mines. Appl. Environ. Microbiol. 67, 5750-5760 https://doi.org/10.1128/AEM.67.21.5750-5760.2001
  49. Teske, A, KU. Hinrichs, V. Edgcomb, A de Vera Gomez, D. Kysela, S.P. Sylva, M.L. Sogin, and H.W. Jannasch. 2002. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl. Environ. Microbiol. 68, 1994-2007 https://doi.org/10.1128/AEM.68.4.1994-2007.2002
  50. Torsvik, V., R. Sorheim, and J. Goksoyr. 1996. Total bacterial diversity in soil and sediment communities - a review. J. Ind Microbiol. 17, 170-178 https://doi.org/10.1007/BF01574690
  51. van der Maarel, M.J., W. Sprenger, R. Haanstra, and L.J. Forney. 1999. Detection of methanogenic archaea in seawater particles and the digestive tract of a marine fish species. FEMS Microbiol. Lett. 173, 189-194
  52. Vetriani, C., A.L. Reysenbach, and J. Dore. 1998. Recovery and phylogenetic analysis of archaeal rRNA sequences from continental shelf sediments. FEMS Microbiol. Lett. 161, 83-88 https://doi.org/10.1111/j.1574-6968.1998.tb12932.x
  53. Vetriani, C., H.W. Jannasch, B.J. MacGregor, D.A. Stahl, and A.L. Reysenbach. 1999. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl. Environ. Microbiol. 65, 4375-4384
  54. von Wintzingerode, F., U.B. Gobel, and E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21,213-229 https://doi.org/10.1111/j.1574-6976.1997.tb00351.x
  55. Watts, J.E.M. 1999. Ph. D. thesis. University of Warwick, Warwick, United Kingdom