DOI QR코드

DOI QR Code

Microstructure Analysis of Carbon Nanotubes Grown by Plasma Enhanced Chemical Vapor Deposition

플라즈마 화학기상증착법으로 성장시킨 탄소나노튜브의 미세구조 분석

  • Yoon Jongsung (Department of Materials Engineering, Graduate School, Kyungnam University) ;
  • Yun Jondo (Division of Advanced Materials, Kyungnam University) ;
  • Park Jongbong (AE Center, Samsung Advanced Institute of Technology (SAIT)) ;
  • Park Kyeongsu (AE Center, Samsung Advanced Institute of Technology (SAIT))
  • 윤종성 (경남대학교 대학원 재료공학과) ;
  • 윤존도 (경남대학교 신소재공학부) ;
  • 박종봉 (삼성종합기술원 AE 센터) ;
  • 박경수 (삼성종합기술원 AE 센터)
  • Published : 2005.04.01

Abstract

Plasma enhanced chemical vapor deposition(PE-CVD) method has an advantage in synthesizing carbon nanotubes(CNTs) at lower temperature compared with thermal enhanced chemical vapor deposition(TE-CVD) method. In this study, CNTs was prepared by using PE-CVD method. The growth rate of CNT was faster more than 100 times on using Invar alloy than iron as catalyst. It was found that chrome silicide was formed at the interface between chrome layer and silicon substrate which should be considered in designing process. Nanoparticles of Invar catalyst were found oxidized on their surfaces with a depth of 10 m. Microstructure was analyzed by scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray spectrometry. Based on the result of analysis, growth mechanism at an initial stage was suggested.

Keywords

References

  1. C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng and M. S. Desselhaus, Science, 286, 1127 (1999) https://doi.org/10.1126/science.286.5442.1127
  2. S. J. Tans, R. Alwin, M. Verschueren and C. Dekker, Nature, 393, 49 (1998) https://doi.org/10.1038/29954
  3. P. L. McEuen, Nature, 393, 15 (1998) https://doi.org/10.1038/29874
  4. P. G. Collins, M. S. Arnold and P. Avouris, Science, 292, 706 (2001) https://doi.org/10.1126/science.1058782
  5. J. H. Hafner, C. L. Cheung and C. M. Lieber, Nature, 398, 761 (1999) https://doi.org/10.1038/19658
  6. P. Poncharal, Z. L. Wang, D. Ugarte and W. A. de Heer, Science, 283, 1513 (1999) https://doi.org/10.1126/science.283.5407.1513
  7. W. B. Downs and R. T. K Baker, J. Mater. Res., 10(3), 625-633 (1995) https://doi.org/10.1557/JMR.1995.0625
  8. A. L. Cara and D. L. Trimm, Carbon, 16(6), 505-506 (1978) https://doi.org/10.1016/0008-6223(78)90102-1
  9. H. Yumoto, R. R. Hasiguti and T. Watanabe, J. Crystal growth, 87(1), 1 (1988) https://doi.org/10.1016/0022-0248(88)90337-5
  10. D. H. Rho, J. S. Kim, D. J. Byun, J. W. Yang and N. R. Kim, Kor. J. Mater. Res., 13(10), 677 (2003) https://doi.org/10.3740/MRSK.2003.13.10.677
  11. Z. W. Pan, S. S. Xie, B. H. Chang, L. F. Sun, W. Y. Zhou and G. Wang, Chem. Phys. Lett., 299(1), 97 (1999) https://doi.org/10.1016/S0009-2614(98)01240-8
  12. C. J. Lee and J. Park, Appl. Phys. Lett., 77(21), 3397 (2000) https://doi.org/10.1063/1.1320851
  13. C. J. Lee and J. Park, J. Phys. Chem. B, 105(12), 2367 (2001) https://doi.org/10.1021/jp0032762
  14. R. T. K. Baker, Carbon, 27, 315 (1989) https://doi.org/10.1016/0008-6223(89)90062-6
  15. N. S. Saks, P. L. Heremans, L. Van den Hove, H. E. Maes, R. F. DeKeersmaecker and G. J. Declerck, IEEE Trans. Electron Device, ED-33(10), 1529-1534 (1986) https://doi.org/10.1109/T-ED.1986.22703