DOI QR코드

DOI QR Code

Electrical Properties and Clamping Voltage Characteristics of ZPCCY-Based Varistor Ceramics

ZPCCY계 바리스터 세라믹스의 전기적 성질 및 제한전압 특성

  • Nahm Choon-Woo (Department of Electrical Engineering, Dongeui University) ;
  • Park Jong-Ah (Department of Electrical Engineering, Dongeui University)
  • 남춘우 (동의대학교 전기공학과) ;
  • 박종아 (동의대학교 전기공학과)
  • Published : 2005.03.01

Abstract

The microstructure, electrical properties, and clamping voltage characteristics of $ZnO-Pr_6O_{11}-CoO-Cr_2O_3-Y_2O_3(ZPCCY)-based$ varistor ceramics sintered at $1350^{\circ}C$ were investigated as a function of sintering time from 1 to 3 h. With increasing sintering time, the average grain size and density increased in the range of $11.4\~16.0\;{\mu}m$ and $5.34\~5.54g/cm^3$, respectively, in accordance of increasing sintering time. The nonlinear exponent decreased in the range of $60\~26$ and the leakage current increased in the range of $1.3\~10.7\;{\mu}A$ with increasing sintering time. The clamping voltage ratio increased in the range $1.58\~1.65$ for ratio surge current of 10 A as the sintering time increased.

Keywords

References

  1. L. M. Levinson and H. R. Philipp, Amer. Ceram. Soc. Bull., 65, 639 (1986)
  2. T. K. Gupta, J. Amer. Ceram. Soc., 73, 1817 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  3. D. R. Clarke, J. Amer. Ceram. Soc., 82, 485 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb01793.x
  4. A. B. Alles and L. Burdick, J. Appl. Phys., 70, 6883 (1991) https://doi.org/10.1063/1.349812
  5. Y. S. Lee and T. Y. Tseng, J. Amer. Ceram. Soc., 75, 1636 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb04236.x
  6. A. B. Alles, R. Puskas, G. Callahan and V. L. Burdick, J. Amer. Ceram. Soc., 76, 2098 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb08339.x
  7. Y. S. Lee, K. S. Liao and T. Y. Tseng, J. Amer. Ceram. Soc., 79, 2379 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08986.x
  8. C. W. Nahm and C. H. Park, J. Mater. Sci., 35, 3037 (2000) https://doi.org/10.1023/A:1004749214640
  9. H. H. Hng and K. M. Knowles, J. Mater. Sci., 37, 1143 (2002) https://doi.org/10.1023/A:1014359204034
  10. C. W. Nahm and H. S. Kim, J, KlEEME, 15, 946 (2002) https://doi.org/10.4313/JKEM.2002.15.11.946
  11. C. W. Nahm, Mater. Lett., 57, 1317 (2003) https://doi.org/10.1016/S0167-577X(02)00979-5
  12. C. W. Nahm and B. C. Shin, Mater. Lett., 57, 1322 (2003) https://doi.org/10.1016/S0167-577X(02)00980-1
  13. C. W. Nahm, J. A. Park, M. J. Kim and J. S. Ryu, J. Kor. Ceram. Soc., 40, 897 (2003) https://doi.org/10.4191/KCERS.2003.40.9.897
  14. C. W. Nahm, J. A. Park, M. J. Kim and J. S. Ryu, J. Kor. Ceram. Soc., 40, 1067 (2003) https://doi.org/10.4191/KCERS.2003.40.11.1067
  15. C. W. Nahm, J. A. Park and M. J. Kim, Mater. Sic., 39, 307 (2004) https://doi.org/10.1023/B:JMSC.0000007762.89222.ec
  16. C. W. Nahm and J. A. Park, J. Kor. Ceram. Soc., 41, 464 (2004) https://doi.org/10.4191/KCERS.2004.41.6.464
  17. J. C. Wurst and J. A. Nelson, J. Amer. Ceram. Soc., 97, 109 (1972) https://doi.org/10.1111/j.1151-2916.1972.tb11224.x
  18. J. H. Kim, T. Kimura and T. Yamacuchi, J. Mater. Sci., 24, 25816 (1989)
  19. K. Eda, J. Appl. Phys., 49, 2964 (1978) https://doi.org/10.1063/1.325139