DOI QR코드

DOI QR Code

Dispersion of SmxCe1-xO2-2/x Nanoparticles which is Synthesized by Hydrothermal Process in Aqueous System

수열합성법으로 합성된 나노 SmxCe1-xO2-2/x 분말의 수계 분산

  • Bae Dong-Sik (Dept. of Ceram. Sci. & Eng., Changwon National Univ.) ;
  • Kim Eun-Jung (Division of Ceramics, Korea Institute of Science and Technology) ;
  • Han Kyong-Sop (Division of Ceramics, Korea Institute of Science and Technology)
  • 배동식 (창원대학교 세라믹공학과) ;
  • 김은정 (한국과학기술연구원 재료연구부) ;
  • 한경섭 (한국과학기술연구원 재료연구부)
  • Published : 2005.02.01

Abstract

Dispersion stability of the $Sm_xCe_{1-x}O_{2-2/x}$ nanoparticles, which was produced by hydrothermal process, was studied in aqueous suspension using ESA (Eletrokinetic Sonic Amplitude). The average particle size of the synthesized $Sm_xCe_{1-x}O_{2-2/x}$ at nanoparticles was about $5{\pm}2nm$. The dispersion and rheological behavior of the $Sm_xCe_{1-x}O_{2-2/x}$ nanoparticles aqueous suspension was investigated using $NH_4OH\;and\;HNO_3$ as a disperse agent. The colloidal stability of aqueous suspensions with $Sm_xCe_{1-x}O_{2-2/x}$ nanoparticles at different pH values has been investigated by means of zeta potential, average particle size, and the distribution of synthesized $Sm_xCe_{1-x}O_{2-2/x}$ nanoparticles. The isoelectric point of the $Sm_xCe_{1-x}O_{2-2/x}$ nanoparticles was at pH around 11 and the value of zeta potential was at its maximum near pH 6.5.

Keywords

References

  1. S. Tsunekawa, R. Sahara, Y. Kawazoe, A. Kasuya, Mater. Trans. JIM, 41, 1104 (2000) https://doi.org/10.2320/matertrans1989.41.1104
  2. A. Trovarelli, C. de Leitenburg, M. Boaro, G. Dolcetti, Catal. Today, 50, 353 (1999) https://doi.org/10.1016/S0920-5861(98)00515-X
  3. S. H. Lee, Z. Y. Lu, S. V. Babu, E. Matijevic, J. Mater. Res., 17, 2744 (2002) https://doi.org/10.1557/JMR.2002.0396
  4. E. Bekyarova, P. Fornasiero, J. Kaspar, M. Graziani, Catal, Today, 45, 179 (1998) https://doi.org/10.1016/S0920-5861(98)00212-0
  5. H. Yahiro, Y. Baba, K Eguchi, H. Arai, J. Electrochem. Soc., 135, 2077 (1988) https://doi.org/10.1149/1.2096212
  6. N. Izu, W. Shin, N. Murayarna, S. Kanzaki, Sens, Actuator B: Chem., 87, 95 (2002) https://doi.org/10.1016/S0925-4005(02)00224-1
  7. M. Jiang, N. D. Wood, R. Komanduri, J. Eng. Mater. Technol: Trans. ASME, 120, 304 (1998) https://doi.org/10.1115/1.2807019
  8. H. lndaba and H. Tagawa, Solid State Ionics, 83, 1 (1996) https://doi.org/10.1016/0167-2738(95)00229-4
  9. X. Chu, W. Chung, L D. Schmidt, J. Am. Ceram. Soc., 76, 2115 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb08344.x
  10. Y. Hakuta, S. Onai, H. Terayarna, T. Adschiri, K Arai, J. Mater. Sci. Lett., 17, 1211 (1998) https://doi.org/10.1023/A:1006597828280
  11. N. C. Wu, E. W. Shi, Y. Q. Zheng, W. J. Li, J. Am. Ceram. Soc., 85, 2462 (2002) https://doi.org/10.1111/j.1151-2916.2002.tb00481.x
  12. M. Hirano, E. Kato, J, Am. Ceram. Soc., 82, 786 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb01838.x
  13. N. Uekawa, M. Ueta, Y. J. Wu, K Kakegawa, Chem. Lett., 845 (2002) https://doi.org/10.1246/cl.2002.854
  14. E. Verdon, M. Devalette, G. Dernazeau, Mater. Lett., 25, 127 (1995) https://doi.org/10.1016/0167-577X(95)00161-1
  15. X. T. Dong, G. Y. Hong, D. C. Yu, D. S. Yu, J. Mater. Sci. Technol, 13, 113 (1997)
  16. T. Masui, K Fujiwara, K Machida, G. Adachi, T. Sakata, H. Mori, Chem. Mater., 9, 2197 (1997) https://doi.org/10.1021/cm970359v
  17. X. D. Zhou, W. Huebner, H. U. Anderson, Appl. Phys. Lett., 80, 3814 (2002) https://doi.org/10.1063/1.1481244
  18. P. L. Chen, I. W. Chen, J. Am. Ceram, Soc., 76, 1577 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03942.x
  19. A. C. Vandyk and A. M. Heyns, J. Colloid lnterf. Sci., 206, 381 (1998) https://doi.org/10.1006/jcis.1998.5686
  20. Tartai, P., Reece, M. and Moya, J. S., J. Am. Ceram. Soc., 81(2), 389 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02345.x
  21. H. Hayashi, R. Sagawa, H. lnaba and K. Kawamura, Solid State Ionics, 131, 281 (2000) https://doi.org/10.1016/S0167-2738(00)00675-5