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MOD M NORMALITY OF (-EXPANSIONS

YOUNG-HO AHN

ABSTRACT. If B > 1, then every non-negative number = has a 8-expansion, i.e.,

- af) | e
T = eo(x) + 5 + 3
where €(z) = [z], ea(x) = [B(z)], e2(x) = [B((Bx))], and so on ([z] denotes the
integral part and (x) the fractional part of the real number z). Let T be a transfor-
mation on [0,1) defined by x — (8z). It is well known that the relative frequency
of k € {0,1,--+,[B]} in B-expansion of z is described by the T-invariant absolutely
continuous measure yg. In this paper, we show the mod M normality of the sequence

{en(@)}-

+

1. INTRODUCTION

Let (X, B, 1) be a probability space and T a measure preserving transformation on
X. A transformation T on X is called ergodic if the constant function is the only
T-invariant function and it is called weakly mixing if the constant function is the only
eigenfunction with respect to T. A measure preserving transformation 7' is called an
exact transformation if (2o, T~"B is the trivial o-algebra consisting of empty set and
whole set modulo measure zero sets. So exact transformation are as far from being
invertible as possible. Recall that if a transformation is exact then that transformation
is weakly mixing [10].

Let X = {20 < z < 1} be the compact group of real numbers modulo 1, and let
6 € X be irrational. The numbers j6,j = 0,41, .-, comprise a dense subgroup of X.
For each interval I ¢ X and n > 0 define S, = S,(6,I) to be the numbers of integers
4,1 < j < n, such that j0 € I. By Kronecker-Weyl theorem lim,_.co %l = p(I), where
1 is Lebesgue measure on X. Veech [9] is interested in the behavior of the sequence
{d,} of parities of {S,}. That is, d, is 0 or 1 as S, is even or odd. i.e., He investigates
the existence of the limit
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and he shows that a necessary and sufficient condition for ug(I) to exist for every
interval I C X is that 6 has bounded partial quotients and show that d,, is evenly
distributed if the length of the interval is not an integral multiple of & modulo 1.
For a given 8 > 1, consider a f3-transformation, T on [0, 1) defined by  — (Bz).
In this paper, we are interested in the uniform distribution of the sequence d, €
{0,---, M — 1} defined by

n-1
dp(z) = Z 15(T%z) (mod M),
k=0

for B-transformations on the interval where 1g(x) is an indicator function of finite
union of intervals, E. If E is the form of [%, %) when %—1 <lor [%, 1) otherwise,
then the distributions of d,(z) are just the mod M normality of the sequence {en(z)}.

In [1], Abn and Choe consider the case when transformations defined defined by
z — (Lz) with L € Non X =[0,1) and M = 2, and show that the sequence {dn} is
evenly distributed if exp(nilg(z)) has finite L-adic discontinuity points <t <<
t. < 1. Recently, Choe, Hamachi and Nakada[4] show that {d,} is evenly distributed
for more general sets and that Zs-extension induced by ¢(z) = exp(mil B(z)) where
1p is a characteristic function of B, is ergodic. In this paper, we show that for all
B-transformations on the unit interval, the sequence {d,} is uniformly distributed and
that the corresponding compact group extension of f-transformation is weakly mixing.
Hence the compact group extension by ¢(z) is exact.

2. PROPERTIES OF [3-EXPANSIONS

In this section, we recall the basic properties of (-expansions. For more related
results, see [3, 7, 8]. For every 8 > 1, there is a unique Tp-invariant absolutely con-
tinuous normalized measure pg and T is an exact transformation on (X,B,ug). By
the Radon-Nikodym theorem, there is a measurable function hg(x), essentially unique,
such that

ua(E) = [ hola)da.
We call hg(z) as the density function of pg.

Theorem 1. Let T be the transformation on [0,1) defined by T(x) = (Bx). Then the
density function of T-invariant absolutely continuous measure hg(x) is described by

1 — 1 s 1
hg(x) = == — where F(B) = ( —n) dzx.
F(ﬁ) n,T;l)>z B /0 n,T;DXE 'B

Proof. Since ugk = pgT —1F for all Lebesgue measurable set E,

b (8-0]
pgla,b) = / hp(z) dz = pgT *[a,b) = Z hg(m —;m) a.e.

m=0
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if [@ — b] is the largest integer m for which both “"’Tm and b—fﬁﬁ are less than 1, and
either a < (8) and b < (8) or a > () and b > (B). In this case,

o([[ ae) = 2 ((of moer)/ (S5m -5))

Hence we show that the density function of pg, hg(z) satisfies the following.

[8-2]

Bha(z) = > hp(y) E:hﬁCp+m)

Ty=x

Now we will show that hg(z) defined by

- 1
hﬂ(l‘) = Z ﬁ7
n, T (1) >z

satisﬁgs Bhp(z) = Z[mﬂ__g] h ( m),
Let
1, it ZET e,
Anm = B .
0, otherwise
and
i <),
™™ 10, otherwise. '
Note that Z[ﬁ;g] Gn,m is the number of m among 0,1, -- -, [8—x] with TH2 < T™(1).
Hence
[%ful BTF(V]+1, if =z <(BT™(1))=T""(1)
= mm [BT7(1)],. otherwise. '
Thus

[B-2] oo [B~-z] m (BT2(1)] + ans1
> Z:Z:gn E:E:a —2: : B -

n=0 m=0 n=0

an+1 5-*-52——,300

n—O

n=0

Finally, consider the following formula,
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ro=[( 5 5) e [E5) e [(E5)

n=0

0
® 1 1 N "(1
=Zza—n/0 an(z) dz =" ﬁn)

So we have

1 1
I1ISFB)S1l+—-+—+-=
(8) 5t 5
Hence hg(z) is well defined. By the ergodicity of T, the proof is completed. O

REMARK 1. We call those 3 which have recurrent tails, i.e., €x1x(8) = €x(8) for all
n > N in their B-expansions, as 3-numbers. Those with zero tails, we call simple 3-
number. It is easy to know that hg(z) is a step function with finite discontinuity if and
only if 3 has a recurrent tail in its S-expansion by the previous Theorem.

5+1
EXAMPLE 1. Let 8 = \/—;_ . Then (8) = f—1= 4. So T?(1) = 1. Hence by the
formula of the previous Theorem,
5 5-1
+3v5 for 0<z< V3 ,
hg(z) = 2 2 .
5+ 5 V5-1
5 for 3 <zr<l.

3. MoD M NORMALITY AND COBOUNDARY EQUATIONS OF (B-TRANSFORMATIONS

Let G be a finite subgroup of the circle group T generated by exp(%\’%). To investigate
the sequence {d,(z)}, we consider the behavior of the sequence exp(gﬁ—idn(a:)) and
check whether this sequence is uniformly distributed on compact group G generated by
exp(%4%). Weyl’s criterion on uniform distribution says that the sequence exp(3%dy,(z))
is uniformly distributed if and only if

N
. 1 k 2mi _
s 37 2 e (G (@) = 0

forall1<k<M-1[5].

We investigate the problem from the viewpoint of spectral theory. Let (X,p) be a
probability space and T an ergodic measure preserving transformation on X, which
is not necessarily invertible. Let ¢(z) be a G-valued function defined by o(z) =
exp(% 1g(x)). Consider the skew product transformation Ty on X X G defined by
Ty(z,9) = (Tz, ¢(x)g). Then
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N-—oo

N , N
. 1 k 2w k_ 1 _1_ n
lim N 21 exp (Mdn(:c)).z —1\}1—1-20N 21 (Ur,)" f(z,2)

where Ut, is an isometry on L?(X x G) induced by T, and f(z,2) = 2. Hence if Ty
is ergodic, then imy oo & Y exp* (22 d,(z)) = 0 by an application of the Birkhoff’s
Ergodic theorem to f(z,2) = z¥. Recall that the dual group of G consists of the
trivial homomorphism 1 and v defined by vx(2) = 2k for 1 < k < M ~ 1. Hence
LY(X x G) = @fZs L*(X) - 2* and each L?(X) - 2* is an invariant subspace of Ur,. If

f(z,2) is an eigen-function with eigenvalue A then f(z,z) = ﬁ;& fre(x) - 2* and

L-1
Ur, f(z,2) = D ¢* () fu(Tz) - 2*.
k=0

Thus ¢*(z) fx(Tx) = Afi(x) for each k. Hence to check the ergodicity we only need to
know whether there exist 0 < k < M — 1 and f(z) such that ¢*(z)f(Tz) = f(z).

Recall that a function f(z) is called a quasicoboundary if f(z) = A~ q(z)g(Tx),
lg(x)] = 1, |\ = 1 a.e. on X. Specially if A = 1 then f(z) is called 2 coboundary.
Similarly a real valued function g(z) is called an additive quasicoboundary if g{z) =
k + q(Tz) — q(z) k € R . Hence if g(z) is an additive quasicoboundary then f(zx) =
exp(2mig(x)) is a quasicoboundary.

Proposition 1. Let T be an ergodic transformation on X and ¢(z) be a G-valued
function. Let Ty be the skew product transformation defined by T, w(@,9) = (Tz,¢(x) g)

on X x G. If ¢(x)h(Tx) = h(z), then there exists a G-valued function q(x) such that
the following diagram commutes

XxG——Q—»XxG

ol lo
XxG —24 Xx@G
where Q(z,g) = (z,q(z)g) and S(z,g) = (Tz,g). Hence Ty has M ergodic components.

Proof. Since (¢(z))M = 1, (¢(z))M (h(Tz))M = (h(x))™ is equivalent to (h(Tz))M =
(h(z))M. So we may assume that (h(x))™ = 1 by the ergodicity of 7. Hence there
exist a G-valued function q(z) such that ¢(z)g(Tz) = q(z). For this q(z), it turns out
that the diagram commutes by easy consideration. O

Lemma 1. Let 7 be a piecewise twice continuously differentiable function such that
infzey, |7'(z)| > 1 where Jy = {z € X,7'(x)exists}. If the number of discontinuity
points of T or 7' is finite, then there is a finite collection of sets Ly, ,Lyn and a set
of invariant function {f1,--- , fn} such that

(1) each L;(1 < i < n) is a finite union of closed intervals;

(2) L; N L; contains at most a finite number of points when #J;
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( ) fi(z )-—OforzgéL,,l <i<n, and fi(z) >0 for a.e. x in L;;
4) [y fila)dz=1for1<i<m;
(5) every T invariant function can be written as f = > .-, a; fi with suitable chosen
{a:}.
Proof. For the proof, See (2, 6]. O

Proposition 2. For the 3-transformation, if a G-valued function ¢(x) is a step func-
tion with finite discontinuity points and ¢(z)h(Tz) = h(x), then there exist G-valued
function q(z) which is a step function with finite discontinuity points and ¢(x)q(Tz) =
q(z). Hence we may assume that h(z) is a G-valued step function with finite disconti-
nuity points.

Proof. Assume that ¢(x ) (Tz) = h(x). Without loss of generality assume that X =
[0,1). Since X x G = U JHX x exp(22i)}, let’s identify {X x exp(%’”)} with the
unit interval [k,k + 1), 0 < k < M. Since ¢(z) is a G-valued step function with
finite discontinuity points, we can regard T}, as a piecewise continuous map on [0, M)
satisfying the condition of Lemma 1. So there exist a G-valued function ¢(x) which is
a step function with finite discontinuity points by Lemma 1 and Proposition 1. O

To investigate the mod M normality of B-transformation, we consider a function
o(x) = exp(%—’}l g(z)). In the following two Lemmas, we consider more general func-
tions ¢(z) with finite discontinuity points.

Proposition 3. For B-transformation, if a G-valued nonconstant function ¢(x) is a
step function with finite discontinuily points % <t < < tp <1, then ¢(x) is not
coboundary.

Proof. Assume that ¢(z)h(Tz) = h(z). Since ¢(x) is a step function with finite discon-
tinuity points, h(x) is also a step function with finite discontinuity points. Hence there
exist 0 < r < —é— such that h(z) is constant on [0,r). There exist o € (0,7) such that
Bz is also in (0,7). Since ¢(z)h(Tx) = h(z), we have ¢(zo)h(Txo) = h(zo). Hence
¢(xo) = 1 on [0, %) Hence h(T'z) = h(z) for all x € [0, %) Since T'[0, -é—) =[0,1), h(x)
has to be constant, i.e., ¢(x) = 1. This contradicts to the assumption of ¢(x). g

V5 +1
2

ExXAMPLE 2. Let 8 = . For the transformation on [0, 1) defined by z — (8z),

1
let’s consider the following. Let I = [15—5,1), F = Uiz @I and E = F Ao T7'F.
Then ¢(x) = exp(milg(z)) is a coboundary even if the discontinuity points of ¢(x) are
contained in [b—, 1) where the cobounding function is h(z) = exp(nilp(z)). Hence the
assumption of finite discontinuity points on ¢(zx) can’t be omitted.

Let ¢(z) = exp(3&1g(x)) where E is the form of ['c k+1) when kgl <lor [%, 1)

otherwise. By the previous Propositon, ¢(z) is not coboundary. Hence we have the
following Theorem.
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Theorem 2. Let 8 > 1 be given and we have a S-expansion for nonnegative number
z, i.e.,

al@) el

B B

where eo(x) = [z], e1(z) = [B(x)], e2(z) = [B((Bz))], and so on ([x] denotes the integral
part and () the fractional part of the real number x). Then the sequence {en(z)}
satisfies the mod M normality almost everywhere.

T = eox) +
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