MOD M NORMALITY OF β -EXPANSIONS

YOUNG-HO AHN

ABSTRACT. If $\beta > 1$, then every non-negative number x has a β -expansion, i.e.,

$$x = \epsilon_0(x) + \frac{\epsilon_1(x)}{\beta} + \frac{\epsilon_2(x)}{\beta} + \cdots$$

where $\epsilon_0(x) = [x]$, $\epsilon_1(x) = [\beta(x)]$, $\epsilon_2(x) = [\beta((\beta x))]$, and so on ([x]] denotes the integral part and (x) the fractional part of the real number x). Let T be a transformation on [0,1) defined by $x \to (\beta x)$. It is well known that the relative frequency of $k \in \{0,1,\cdots,[\beta]\}$ in β -expansion of x is described by the T-invariant absolutely continuous measure μ_{β} . In this paper, we show the mod M normality of the sequence $\{\epsilon_n(x)\}$.

1. Introduction

Let (X, \mathcal{B}, μ) be a probability space and T a measure preserving transformation on X. A transformation T on X is called ergodic if the constant function is the only T-invariant function and it is called weakly mixing if the constant function is the only eigenfunction with respect to T. A measure preserving transformation T is called an exact transformation if $\bigcap_{n=0}^{\infty} T^{-n}\mathcal{B}$ is the trivial σ -algebra consisting of empty set and whole set modulo measure zero sets. So exact transformation are as far from being invertible as possible. Recall that if a transformation is exact then that transformation is weakly mixing [10].

Let $X = \{x \mid 0 \le x < 1\}$ be the compact group of real numbers modulo 1, and let $\theta \in X$ be irrational. The numbers $j\theta, j = 0, \pm 1, \cdots$, comprise a dense subgroup of X. For each interval $I \subset X$ and n > 0 define $S_n = S_n(\theta, I)$ to be the numbers of integers $j, 1 \le j \le n$, such that $j\theta \in I$. By Kronecker-Weyl theorem $\lim_{n\to\infty} \frac{S_n}{n} = \mu(I)$, where μ is Lebesgue measure on X. Veech [9] is interested in the behavior of the sequence $\{d_n\}$ of parities of $\{S_n\}$. That is, d_n is 0 or 1 as S_n is even or odd. i.e., He investigates the existence of the limit

$$\mu_{\theta}(I) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} d_n,$$

²⁰⁰⁰ Mathematics Subject Classification: 28D05, 47A35.

Key words and phrases: β -expansions, β -transformation, coboundary, Mod M normality. Partially supported by Korea Research Foundation Grant(KRF-2003-037-C00007).

[©] THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 2005

and he shows that a necessary and sufficient condition for $\mu_{\theta}(I)$ to exist for every interval $I \subset X$ is that θ has bounded partial quotients and show that d_n is evenly distributed if the length of the interval is not an integral multiple of θ modulo 1.

For a given $\beta > 1$, consider a β -transformation, T on [0,1) defined by $x \to (\beta x)$.

In this paper, we are interested in the uniform distribution of the sequence $d_n \in \{0, \dots, M-1\}$ defined by

$$d_n(x) \equiv \sum_{k=0}^{n-1} \mathbf{1}_E(T^k x) \pmod{M},$$

for β -transformations on the interval where $\mathbf{1}_{E}(x)$ is an indicator function of finite union of intervals, E. If E is the form of $[\frac{k}{\beta}, \frac{k+1}{\beta}]$ when $\frac{k+1}{\beta} < 1$ or $[\frac{k}{\beta}, 1)$ otherwise, then the distributions of $d_n(x)$ are just the mod M normality of the sequence $\{\epsilon_n(x)\}$.

In [1], Ahn and Choe consider the case when transformations defined by $x \mapsto (Lx)$ with $L \in \mathbb{N}$ on X = [0,1) and M = 2, and show that the sequence $\{d_n\}$ is evenly distributed if $\exp(\pi i \mathbf{1}_E(x))$ has finite L-adic discontinuity points $\frac{1}{L} \leq t_1 < \cdots < t_n \leq 1$. Recently, Choe, Hamachi and Nakada[4] show that $\{d_n\}$ is evenly distributed for more general sets and that \mathbb{Z}_2 -extension induced by $\phi(x) = \exp(\pi i \mathbf{1}_B(x))$ where $\mathbf{1}_B$ is a characteristic function of B, is ergodic. In this paper, we show that for all β -transformations on the unit interval, the sequence $\{d_n\}$ is uniformly distributed and that the corresponding compact group extension of β -transformation is weakly mixing. Hence the compact group extension by $\phi(x)$ is exact.

2. Properties of β -expansions

In this section, we recall the basic properties of β -expansions. For more related results, see [3, 7, 8]. For every $\beta > 1$, there is a unique T_{β} -invariant absolutely continuous normalized measure μ_{β} and T_{β} is an exact transformation on $(X, \mathcal{B}, \mu_{\beta})$. By the Radon-Nikodym theorem, there is a measurable function $h_{\beta}(x)$, essentially unique, such that

$$\mu_{\beta}(E) = \int_{E} h_{\beta}(x) \, dx.$$

We call $h_{\beta}(x)$ as the density function of μ_{β} .

Theorem 1. Let T be the transformation on [0,1) defined by $T(x) = (\beta x)$. Then the density function of T-invariant absolutely continuous measure $h_{\beta}(x)$ is described by

$$h_{\beta}(x) = \frac{1}{F(\beta)} \sum_{n,T^n(1)>x}^{\infty} \frac{1}{\beta^n} \quad where \quad F(\beta) = \int_0^1 \left(\sum_{n,T^n(1)>x}^{\infty} \frac{1}{\beta^n} \right) \, dx.$$

Proof. Since $\mu_{\beta}E = \mu_{\beta}T^{-1}E$ for all Lebesgue measurable set E,

$$\mu_{\beta}[a,b) = \int_{a}^{b} h_{\beta}(x) dx = \mu_{\beta} T^{-1}[a,b) = \sum_{m=0}^{[\beta-b]} h_{\beta} \left(\frac{x+m}{\beta}\right)$$
 a.e.

if $[\beta - b]$ is the largest integer m for which both $\frac{a+m}{\beta}$ and $\frac{b+m}{\beta}$ are less than 1, and either $a < (\beta)$ and $b < (\beta)$ or $a > (\beta)$ and $b > (\beta)$. In this case,

$$\beta \left(\int_{a}^{b} \frac{h_{\beta}(x)}{b-a} \, dx \right) = \sum_{m=0}^{[\beta-b]} \left(\left(\int_{\frac{a+m}{\beta}}^{\frac{b+m}{\beta}} h_{\beta}(x) \, dx \right) \middle/ \left(\frac{b+m}{\beta} - \frac{a+m}{\beta} \right) \right).$$

Hence we show that the density function of μ_{β} , $h_{\beta}(x)$ satisfies the following.

$$\beta h_{\beta}(x) = \sum_{Ty=x} h_{\beta}(y) = \sum_{m=0}^{[\beta-x]} h_{\beta}\left(\frac{x+m}{\beta}\right).$$

Now we will show that $h_{\beta}(x)$ defined by

$$h_{\beta}(x) = \sum_{n, T^{n}(1) > x}^{\infty} \frac{1}{\beta^{n}},$$

satisfies $\beta h_{\beta}(x) = \sum_{m=0}^{[\beta-x]} h_{\beta}(\frac{x+m}{\beta})$.

Let

$$a_{n,m} = \begin{cases} 1, & \text{if } \frac{x+m}{\beta} < T^n(1), \\ 0, & \text{otherwise} \end{cases}.$$

and

$$a_{n,m} = \begin{cases} 1, & \text{if } x < T^n(1), \\ 0, & \text{otherwise.} \end{cases}$$

Note that $\sum_{m=0}^{\lfloor \beta-x \rfloor} a_{n,m}$ is the number of m among $0,1,\cdots,\lfloor \beta-x \rfloor$ with $\frac{x+m}{\beta} < T^n(1)$. Hence

$$\sum_{m=0}^{[\beta-x]} a_{n,m} = \begin{cases} [\beta T_{\beta}^n(1)] + 1, & \text{if} \quad x < (\beta T^n(1)) = T^{n+1}(1) \\ [\beta T_{\beta}^n(1)], & \text{otherwise.} \end{cases}.$$

Thus

$$\sum_{m=0}^{[\beta-x]} h_{\beta} \left(\frac{x+m}{\beta} \right) = \sum_{m=0}^{[\beta-x]} \sum_{n=0}^{\infty} \frac{a_{n,m}}{\beta^n} = \sum_{n=0}^{\infty} \sum_{m=0}^{[\beta-x]} \frac{a_{n,m}}{\beta^n} = \sum_{n=0}^{\infty} \frac{[\beta T_{\beta}^n(1)] + a_{n+1}}{\beta^n}$$

$$= \sum_{n=0}^{\infty} \frac{\epsilon_n(\beta)}{\beta^n} + \beta \sum_{n=0}^{\infty} \frac{a_{n+1}}{\beta^{n+1}} = \beta + \beta \sum_{n=0}^{\infty} \frac{a_n}{\beta^n} - \beta a_0$$

$$= \beta h_{\beta}(x).$$

Finally, consider the following formula,

$$F(\beta) = \int_0^1 \left(\sum_{n,T^n(1)>x}^{\infty} \frac{1}{\beta^n} \right) dx = \int_0^1 \left(\sum_{n=0}^{\infty} \frac{a_n(x)}{\beta^n} \right) dx = \int_0^1 \left(\sum_{n=0}^{\infty} \frac{a_n(x)}{\beta^n} \right) dx$$
$$= \sum_{n=0}^{\infty} \frac{1}{\beta^n} \int_0^1 a_n(x) dx = \sum_{n=0}^{\infty} \frac{T^n(1)}{\beta^n}$$

So we have

$$1 \le F(\beta) \le 1 + \frac{1}{\beta} + \frac{1}{\beta^2} + \dots = \frac{\beta}{\beta - 1}.$$

Hence $h_{\beta}(x)$ is well defined. By the ergodicity of T, the proof is completed.

REMARK 1. We call those β which have recurrent tails, i.e., $\epsilon_{n+k}(\beta) = \epsilon_n(\beta)$ for all $n \geq N$ in their β -expansions, as β -numbers. Those with zero tails, we call simple β -number. It is easy to know that $h_{\beta}(x)$ is a step function with finite discontinuity if and only if β has a recurrent tail in its β -expansion by the previous Theorem.

EXAMPLE 1. Let $\beta = \frac{\sqrt{5}+1}{2}$. Then $(\beta) = \beta - 1 = \frac{1}{\beta}$. So $T^2(1) = 1$. Hence by the formula of the previous Theorem,

$$h_{\beta}(x) = \begin{cases} \frac{5+3\sqrt{5}}{2} & \text{for } 0 \le x < \frac{\sqrt{5}-1}{2}, \\ \frac{5+\sqrt{5}}{2}, & \text{for } \frac{\sqrt{5}-1}{2} \le x < 1. \end{cases}$$

3. Mod M normality and coboundary equations of eta-transformations

Let G be a finite subgroup of the circle group \mathbb{T} generated by $\exp(\frac{2\pi i}{M})$. To investigate the sequence $\{d_n(x)\}$, we consider the behavior of the sequence $\exp(\frac{2\pi i}{M}d_n(x))$ and check whether this sequence is uniformly distributed on compact group G generated by $\exp(\frac{2\pi i}{M})$. Weyl's criterion on uniform distribution says that the sequence $\exp(\frac{2\pi i}{M}d_n(x))$ is uniformly distributed if and only if

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \exp^{k} \left(\frac{2\pi i}{M} d_{n}(x) \right) = 0$$

for all $1 \le k \le M - 1$ [5].

We investigate the problem from the viewpoint of spectral theory. Let (X, μ) be a probability space and T an ergodic measure preserving transformation on X, which is not necessarily invertible. Let $\phi(x)$ be a G-valued function defined by $\phi(x) = \exp(\frac{2\pi i}{M}\mathbf{1}_E(x))$. Consider the skew product transformation T_{ϕ} on $X \times G$ defined by $T_{\phi}(x,g) = (Tx,\phi(x)g)$. Then

$$\lim_{N\to\infty}\frac{1}{N}\sum_{1}^{N}\exp^{k}(\frac{2\pi i}{M}d_{n}(x))\cdot z^{k}=\lim_{N\to\infty}\frac{1}{N}\sum_{1}^{N}(U_{T_{\phi}})^{n}f(x,z)$$

where $U_{T_{\phi}}$ is an isometry on $L^2(X \times G)$ induced by T_{ϕ} and $f(x,z) = z^k$. Hence if T_{ϕ} is ergodic, then $\lim_{N \to \infty} \frac{1}{N} \sum_{1}^{N} \exp^k(\frac{2\pi i}{M} d_n(x)) = 0$ by an application of the Birkhoff's Ergodic theorem to $f(x,z) = z^k$. Recall that the dual group of G consists of the trivial homomorphism 1 and γ_k defined by $\gamma_k(z) = z^k$ for $1 \le k \le M - 1$. Hence $L^2(X \times G) = \bigoplus_{k=0}^{L-1} L^2(X) \cdot z^k$ and each $L^2(X) \cdot z^k$ is an invariant subspace of $U_{T_{\phi}}$. If f(x,z) is an eigen-function with eigenvalue λ then $f(x,z) = \sum_{k=0}^{L-1} f_k(x) \cdot z^k$ and

$$U_{T_{\phi}}f(x,z) = \sum_{k=0}^{L-1} \phi^{k}(x)f_{k}(Tx) \cdot z^{k}.$$

Thus $\phi^k(x)f_k(Tx) = \lambda f_k(x)$ for each k. Hence to check the ergodicity we only need to know whether there exist $0 \le k \le M - 1$ and f(x) such that $\phi^k(x)f(Tx) = f(x)$.

Recall that a function f(x) is called a *quasicoboundary* if $f(x) = \lambda \cdot \overline{q(x)}q(Tx)$, |q(x)| = 1, $|\lambda| = 1$ a.e. on X. Specially if $\lambda = 1$ then f(x) is called a coboundary. Similarly a real valued function g(x) is called an additive quasicoboundary if g(x) = k + q(Tx) - q(x) $k \in \mathbb{R}$. Hence if g(x) is an additive quasicoboundary then $f(x) \equiv \exp(2\pi i g(x))$ is a quasicoboundary.

Proposition 1. Let T be an ergodic transformation on X and $\phi(x)$ be a G-valued function. Let T_{ϕ} be the skew product transformation defined by $T_{\phi}(x,g) = (Tx,\phi(x)\cdot g)$ on $X\times G$. If $\phi(x)h(Tx)=h(x)$, then there exists a G-valued function q(x) such that the following diagram commutes

$$\begin{array}{ccc} X \times G & \xrightarrow{T_{\phi}} & X \times G \\ Q \downarrow & & \downarrow Q \\ X \times G & \xrightarrow{S} & X \times G \end{array}$$

where Q(x,g)=(x,q(x)g) and S(x,g)=(Tx,g). Hence T_{ϕ} has M ergodic components.

Proof. Since $(\phi(x))^M = 1$, $(\phi(x))^M (h(Tx))^M = (h(x))^M$ is equivalent to $(h(Tx))^M = (h(x))^M$. So we may assume that $(h(x))^M = 1$ by the ergodicity of T. Hence there exist a G-valued function q(x) such that $\phi(x)q(Tx) = q(x)$. For this q(x), it turns out that the diagram commutes by easy consideration.

Lemma 1. Let τ be a piecewise twice continuously differentiable function such that $\inf_{x \in J_1} |\tau'(x)| > 1$ where $J_1 = \{x \in X, \tau'(x) \text{ exists}\}$. If the number of discontinuity points of τ or τ' is finite, then there is a finite collection of sets L_1, \dots, L_n and a set of invariant function $\{f_1, \dots, f_n\}$ such that

- (1) each $L_i(1 \le i \le n)$ is a finite union of closed intervals;
- (2) $L_i \cap L_j$ contains at most a finite number of points when $i \neq j$;

- (3) $f_i(x) = 0$ for $x \notin L_i, 1 \le i \le n$, and $f_i(x) > 0$ for a.e. x in L_i ; (4) $\int_{L_i} f_i(x) dx = 1$ for $1 \le i \le n$;
- (5) every τ invariant function can be written as $f = \sum_{i=1}^{n} a_i f_i$ with suitable chosen

Proof. For the proof, See [2, 6].

Proposition 2. For the β -transformation, if a G-valued function $\phi(x)$ is a step function with finite discontinuity points and $\phi(x)h(Tx) = h(x)$, then there exist G-valued function q(x) which is a step function with finite discontinuity points and $\phi(x)q(Tx) =$ q(x). Hence we may assume that h(x) is a G-valued step function with finite discontinuity points.

Proof. Assume that $\phi(x)h(Tx) = h(x)$. Without loss of generality assume that X = x[0,1). Since $X \times G = \bigcup_{k=0}^{M-1} \{X \times \exp(\frac{2k\pi i}{M})\}$, let's identify $\{X \times \exp(\frac{2k\pi i}{M})\}$ with the unit interval [k, k+1), $0 \le k < M$. Since $\phi(x)$ is a G-valued step function with finite discontinuity points, we can regard T_{ϕ} as a piecewise continuous map on [0, M)satisfying the condition of Lemma 1. So there exist a G-valued function q(x) which is a step function with finite discontinuity points by Lemma 1 and Proposition 1.

To investigate the mod M normality of β -transformation, we consider a function $\phi(x) = \exp(\frac{2\pi i}{M} \mathbf{1}_E(x))$. In the following two Lemmas, we consider more general functions $\phi(x)$ with finite discontinuity points.

Proposition 3. For β -transformation, if a G-valued nonconstant function $\phi(x)$ is a step function with finite discontinuity points $\frac{1}{\beta} \leq t_1 < \cdots < t_n < 1$, then $\phi(x)$ is not coboundary.

Proof. Assume that $\phi(x)h(Tx) = h(x)$. Since $\phi(x)$ is a step function with finite discontinuity points, h(x) is also a step function with finite discontinuity points. Hence there exist $0 < r \le \frac{1}{\beta}$ such that h(x) is constant on [0,r). There exist $x_0 \in (0,r)$ such that βx_0 is also in (0,r). Since $\phi(x)h(Tx)=h(x)$, we have $\phi(x_0)h(Tx_0)=h(x_0)$. Hence $\phi(x_0) = 1$ on $[0, \frac{1}{\beta})$. Hence h(Tx) = h(x) for all $x \in [0, \frac{1}{\beta})$. Since $T[0, \frac{1}{\beta}) = [0, 1)$, h(x)has to be constant, i.e., $\phi(x) \equiv 1$. This contradicts to the assumption of $\phi(x)$.

EXAMPLE 2. Let $\beta = \frac{\sqrt{5}+1}{2}$. For the transformation on [0,1) defined by $x \to (\beta x)$, let's consider the following. Let $I = [\frac{1.5}{\beta}, 1)$, $F = \bigcup_{k=0}^{\infty} \frac{1}{\beta^k} I$ and $E = F \triangle T^{-1} F$. Then $\phi(x) = \exp(\pi i \mathbf{1}_E(x))$ is a coboundary even if the discontinuity points of $\phi(x)$ are contained in $[\frac{1}{\beta}, 1)$ where the cobounding function is $h(x) = \exp(\pi i \mathbf{1}_F(x))$. Hence the assumption of finite discontinuity points on $\phi(x)$ can't be omitted.

Let $\phi(x) = \exp(\frac{2\pi i}{M} \mathbf{1}_E(x))$ where E is the form of $\left[\frac{k}{\beta}, \frac{k+1}{\beta}\right]$ when $\frac{k+1}{\beta} < 1$ or $\left[\frac{k}{\beta}, 1\right]$ otherwise. By the previous Proposition, $\phi(x)$ is not coboundary. Hence we have the following Theorem.

Theorem 2. Let $\beta > 1$ be given and we have a β -expansion for nonnegative number x, i.e.,

$$x = \epsilon_0(x) + \frac{\epsilon_1(x)}{\beta} + \frac{\epsilon_2(x)}{\beta} + \cdots$$

where $\epsilon_0(x) = [x]$, $\epsilon_1(x) = [\beta(x)]$, $\epsilon_2(x) = [\beta((\beta x))]$, and so on ([x] denotes the integral part and (x) the fractional part of the real number x). Then the sequence $\{\epsilon_n(x)\}$ satisfies the mod M normality almost everywhere.

References

- [1] Y. Ahn and G. H. Choe, Spectral types of skewed Bernoulli shift, Proc. Amer. Math. Soc. 128 (2000), 503-510.
- [2] A. Boyarsky and P. Góra, Laws of Chaos, Birkhäuser, 1997
- [3] F. Blanchard β-expansions and symbolic dynamics, Theoretical Computer Science 65 (1989), 131–141.
- [4] G. H. Choe, T. Hamachi and H. Nakada Skew product and mod 2 normal numbers, Studia Math. 165 (2004), 53–60
- [5] E. Hlawka, The Theory of Uniform Distribution, A B Academic publishers, (1984).
- [6] T. Li and J. A. Yorke, Ergodic transformations from an interval into itself, Tran. Amer. Math. Soc. 235 (1978), 183-192.
- [7] W. Parry, On the β-expansion of real numbers, Acta Math. Acad. Sci. Hung. 11 (1960), 401-416.
- [8] A. Renyi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957), 477-493.
- [9] W. A. Veech, strict ergodicity of uniform distribution and Kronecker-Weyl theorem mod 2, Tran. Amer. Math. Soc. 140 (1969), 1-33.
- [10] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag New York, 1982.

Young-Ho Ahn:

DEPARTMENT OF MATHEMATICS, MOKPO NATIONAL UNIVERSITY, 534-729, KOREA E-mail: yhahn@mokpo.ac.kr