J. KSIAM Vol.9, No.1, 55-61, 2005

MINIMIZATION OF EXTENDED QUADRATIC FUNCTIONS WITH
INEXACT LINE SEARCHES

ISSAM A.R. MOGHRABI

ABsTRACT. A Conjugate Gradient algorithm for unconstrained minimization is pro-
posed which is invariant to a nonlinear scaling of a strictly convex quadratic function
and which generates mutually conjugate directions for extended quadratic functions.
1t is derived for inexact line searches and for general functions. It compares favourably
in numerical tests (over eight test functions and dimensionality up to 1000) with the
Dixon (1975) algorithm on which this new algorithm is based .

1. INTRODUCTON

let A denote a symmetric and positive definite nzn matrix . For z € R", we define

q(z) = (1/2)aT Az + b1z + C,
for a constant Hessian A and b is some constant vector. Let F : R — R™ denote

a strictly monotonic increasing function (with a non -vanishing first derivative) and
define

(1) f(z) = F(q(=)),

for some nonlinear scaling F. Such a function f is called an extended quadratic function

When a minimization algorithm is applied to f, the ith iterate is denoted by z;, the
corresponding function value by f; and its gradient by g;. The function and gradient
values of ¢ are denoted by ¢; and G, respectively. The derivative of f at g; is denoted
by F;. We note that g; = F;G; and define p; = ¢;/c;11 for each i, where ¢ = F. It
is assumed here that in applying a minimization procedure to an extended quadratic
function one only has specific knowledge of f;, g; and p;.

In order to improve the rate of convergence for more general functions than the
quadratic form, new algorithms have been suggested by several authors [1,2,3,4,5]. All
these algorithms derive an expression for p;g;11, and hence include the property that

55

56 ISSAM A.R. MOGHRABI

the extended quadratic f is minimized in a finite number of iterations since exact line
searches are required. In the present paper, this requirement is deliberately dropped
and the formula for p;g;+1 is based on inexact line searches .

2. DERIVATION OF p;

First, we define a general algorithm for the classical CG -method as follows :
Given a starting point o € R", function f(z) and its gradient G(z), compute dy =
—Gy, initially
Then iterate :

Tiv1 = T; + Nd;, 1 =0,1,2, ...,

diy1 = Gipa + Bydi, 1=0,1,2,...,
where); is determined by an exact line search routine, and 3; is defined by different
formulae according to the specific algorithm chosen (see[6] and [7}).

Axiom 1. lemma 1.

Let Giy1 = G(z; + 1/2);d), which is consistent with the natural definition G;y; =
G(z; + jAid;) (for a quadratic). Then the following holds G; 11 = 2G11y/2 — G..
Proof omitted , see [3].

Now let zg, d; € R™, i = 0,1,. , and consider the iterative process z;y1 = z; + Aid;
where); is like before. We now define the following expressions for g;fl_l , g;rl px

(2) 91 = giv1 — (95119i/97 90)9:,

(3) 12 = Giv1j2 = (9311/29i/ 90 90)9,
so that the following lemma holds for extended quadratic functions like the one given
in (1).

Axiom 2. Lemma 2.

N ! !
If p; = ¢i/cit1, where ¢; = F}, ¢iy1 = F

iv1, then

T T T T T
pi = CifCiy1 = gﬁlgmgi 9i/9f+T19i+19¢+1/29i - 9&1/29i+19i+191'

proof
For g;11, we have directly

(4) gi+1 = ¢i41Gip1 = ¢ip1(G; + M Ad;)

MINIMIZATION OF EXTENDED QUADRATIC FUNCTIONS 57

Using (2),(3), and (4) we have :

gh = cir1(Gi+ MAdy) — [(cis1(Gi + MAdi) T iGy) /(€G] Gi))eiGi
(5) = Aici—i—l[Adi - (G?Adz/G?G,)GZ]
Again

9:;1/2 = (1/2)ciz1/2(Git1 + Gi) = [(1/2)ci12(Git + Gy Gy) /iG] GileiGi
(6) = (1/2)cip10)i(Ad; — (GT Ad;/GT Gy)Gy).
Multiplying (5) and (6) by a non-zero vector g;4; and dividing we get :

+T + . — 9.
91+19z‘+1/9i+1/291+1 = 2¢i+1Ci41/2
From Lemma 1 we have

gi+1 = 2(civ1/ciy1/2)9i1/2 = (Civ1/ci)gi-

Therefore, gi+1 = (93419i+1)/ (9711 /29i+1)9i41/2 — (ci+1/ci)gi-
On the assumption that); is an arbitrary positive number and g;is chosen to be a
non-zero vector, we have

T
giT+19z‘ = ((9i++7i9i+1)/(9;1£/29i+1))(QiT+1/29i) — (cit1/ci)(9; 9i)-
Rearranging, we obtain

T T T
pi = Cifciy1 = g{ilgiﬂgfgi/Q:LTlgngﬁl/ggi - 9a1/29i+19i+1gi,
as required

3. ALGORITHM EDIX

In this section, we first describe the CG-method based on the quadratic model pro-
posed by Dixon in [6] which employs inexact line searches, termed (DIX): This is
modified (in our case) to be invariant to a nonlinear scaling of ¢(z). We call this the
extended dixon method (EDIX) .

The search direction d;4; is given by the formula

dit1 = git1 + Bidi, 1=0,1,2,....,
where dy = —gq initially .
Dixon presented several versions of the modified CG-method in [6]. We have se-
lected here the well-known Hestenes and Stiefel method.(referred to as EDIX) after

58 ISSAM A.R. MOGHRABI

incorporating in it the quantity p; defined in (7). Thus, we get the respective EDIX
formulae

(EDIXA) Bt = gilpigivi — 9:1/1d (pigiy — 9i)

* T
(EDIXB) Bi = pigirgin /97" 60
where the term g} represents the estimated gradient term, namely the estimated value

of the gradient at z}, the point which would have been reached with exact line searches.
For a quadratic function the gradients can be evaluated as follows:

* T
i = 9F + (L — giadi/yi dilys
where y; = g;.1 — g; and g5 = go- The search directions generated by this extended
algorithm are not necessarily descent ones for an arbitrary function. However, we

use the following established criterion to check that the new direction is sufficiently
downhill:

T

(7) dX 19141 < 0.99719i41-

After s (s < n) iterations or if (7) is not satisfied the iteration is restarted, as follows:

S
the estimated error-vector term is used as in [6], i.e, es41 =) €ip; , where & =
=0

(aiggjrlpi)/(yiTpi). This estimated error-vector term is added to zs41 to find 549, i€
Tst2 = Ts+1+ €s+1 and the iteration is then restarted with —gs42

4. COMPUTATIONAL RESULTS AND CONCLUSION

Eight standard test functions are employed, in dimensions up to 1000, in order to
examine the overall effectiveness of the new algorithm.

The algorithm has been tested using C++ on a PIV 200 processor, using double
precision. The effectiveness of modifying DIX to EDIX is tested. In each case, the
line search accuracy parameter « is chosen to satisfy the relation (7). The line-search
algorithm used is a standard cubic interpolation (as in [9]). Table 1 contains the
respective numerical results for the EDIX and DIX algorithms. The table below reports
the number of function calls (NOF) and the number of iterations (NOI), for each test
function. Overall totals are also given for NOF and NOL

Comparisons are affected by the choice of test function, accuracy required, linear
search and restarting criterion. Nevertheless, the computational results indicate clearly
that the extended version gives overall improvement of at least 10% on NOF and/or

MINIMIZATION OF EXTENDED QUADRATIC FUNCTIONS 59

NOI, although on individual functions some failures have been reported. It is generally

evident that the new algorithm has a clear advantage on higher dimensions and non-
quadratic functions.

All algorithms terminate when | f - f;, | < 1 x 10710

TABLE : (1)
TEST EDXA |EDX EDXB
FUNCTIONS | N | NOI(NOF) | NOI(NOF) | NOI(NOF)
ROSEN 2 22(54) 25(57) 23(59)
CUBE 2 22(57) 24(55) 23(60)
BEALE 2 8(20) 9(43) 9(30)
BOX 2 9(41) 9(44) 9(41)
FREUD 2 6(18) 7(24) 6(21)
BIGGS 3 11(31) 13(37) 11(30)
HELICAL |3 18(39) 18(43) 17(36)
RECIPE 3 6(19) 6(21) 7(19)
MIELE 4 30(83) 30(93) 28(77)
POWILL 4 31(67) 29(69) 23(59)
WOOD 4 19(42) 18(56) 20(41)
DIXON 10 [17(37) 18(46) 23(49)
OREN 10 | 12(64) 12(55) 13(56)
NON-DIGN |20 | 20(46) 22(54) 21(47)
TRI-DIGN |30 | 28(57) 28(63) 29(59)
OREN 30 | 21(95) 21(85) 23(99)
SHALLOW |40 |6(18) 6(30) 6(20)
FULL 40 | 39(79) 39(81) 38(83)
EX-ROSEN |60 | 23(57) 26(77) | 24(60)
EX-POWELL | 60 | 40(83) 35(89) 42(70)
EX-WOOD |60 | 17(42) 18(66) 18(48)
EX-POWELL | 80 | 43(88) 39(90) 41(82)
WOLFE 80 | 48(75) 37(81) 41(79)
NON-DIGN |90 | 23(53) 22(55) 23(59)
EX-WOOD | 100 | 19(42) 18(46) 19(39)
EX-ROSEN | 100 | 23(57) 26(60) 23(48)
Wood 200 | 29(65) 30(62) 30(58)
Powell 200 | 52(133) 44(95) 41(93)
Powell 1000 | 89(240) 93(198) 85(186)
TOTAL NOI | 731 722 716
NOF | 1802 1875 1708

60 ISSAM A.R. MOGHRABI

REFERENCES

[1] R. Fletcher and M.J.D. Powell, ” A rapidly convergent descent method for minimization”, Com-
puter Journal 6 (1963), 163-168.
[2] S.S. Oren, ”Self-scaling variable metric algorithm, Part II”, Management Science 20 (1974), 863-
874.
[3] S.S. Oren, ”On the selection of parameters in self-scaling variable metric algorithms”, Mathemat-
ical Programming 3 (1974) 351-367.
[4] S.S. Oren and D.G. Luenberger, ”Self-scaling variable metric algorithm, Part I”, Management
Science 20 (1974) 845-862.
[5] S.S. Oren and E. Spedicato, ”"Optimal conditioning of self-scaling variable metric algorithms”,
Mathematical Programming 10 (1976) 70-90.
[6] Dixon, L.C.W. Conjugate gradient algorithm quadratic termination without line searches, Journal
of the Institute of Mathematics and its Applications 15, 1975.
[7] C.G. Broyden, "The convergence of a class of double rank minimization algorithms II. The new
algorithm”, Journal of the Institute of Mathematics and its Applications 6 (1970) 221-231.
[8] S.S. Oren, ”Self-scaling variable metric algorithm without line search for unconstrained minimiza-
tion”, Mathematics of Computation 27 (1973), 873-885.
[9] G.P. McCormick and K.. Ritter, ”Methods of conjugate directions versus quasi-Newton methods”,
Mathematical Programming 3 (1972) 101-116.
[10] M.C. Biggs, ”Minimization algorithms making use of non-quadratic properties of the objective
function”, Journal of the Institute of Mathematics and its Applications 8 (1971) 315-327.
[11] M.C. Biggs, ”A note on minimization algorithms which make use of non-quadratic properties of
the objective function”, Journal of Institute of Mathematics and its Applications12 (1973) 337-338.
[12] H.R. Hestenes and E. Stiefel, ”Methods of conjugate gradients for solving linear systems”, Journal
of Research of the National Bureau of Standards, 49 (1952), 409-436.
[13] L. Nazareth, ” A relationship between BFGS and conjugate-gradient algorithms and its implemen-
tations for new algorithms”, SIAM Journal on Numerical Analysis,16 (1979), 794-800.
[14] K.-W. Brodlie, ”Some topics in unconstrained minimization”, Ph.D. thesis, University of Dundee,
(1973).
[15] B. Bunday, ”A Basic Optimization Methods”, Edward Arnold, Bedford Square, London, (1984).

Appendix
All the test functions used in this paper are from general literature
1. Rosenbrock banana function, n=2,
=100 (xo-x3)2+(1-x1)? , xo =(-1.2,1.0)T.
2. Cube function, n=2,
£ =100 (x2-x3)%4(1-x1)?, xo=(-1.2,1.0)T.
3. Scale function, n=2,
f=(1.5-%; (1-x2))24 (2.25 - x1 (1 - x2))?+ (2.625 - x1(1 - x3))%, X0 = (0,0)T.
4, Box function, n = 2,
f=3" (e g -e-x%z - e + e-10%) 2 where z; = (0.1)" and x¢ = (5,0)T, i=1,...
5. Frudenstein and Roth function, n=2,

MINIMIZATION OF EXTENDED QUADRATIC FUNCTIONS 61

f=[13 +x1 + ((5-x2)x2-2)x2)? + [-29 + x1 + ((14+32)x0-14)%]%, x0 = (30,3)".

6. Recipe function, n = 3,

f=(x1-5)2 + x% + x2/(x1-x2)?, xo = (2,5,1)T.

7. Biggs function, n=3,

f=Y" (e 7% - x5 e %2 g% 4 Be~1020) 2 wherez; = (0.1) iand xo= (1,2,1)7,i=1...

8. Helical Valley function, n=3,

f =100 { [x3-1.0]2 + [1-1]2 }+ x2,where r=1/2 arctan (x2/x;), for x; > 0

and r = 1/2 + 1/2 arctan (x3/x;) for x; < 0, xo = (-1,0,0)T.

9. Miele and Cornwell function, n = 4,

f= (e““ - 1)2 + tan 4 (Xg - X4) + 100 (Xg- X3)2 + 8x1+ (X4— 1)2, Xg= (1, 2, 2, 2)T.

10. Dixon function, n = 10,

f=(1-x)% + (1- x30)% + 2?21()%2 -x4+1)% , %o = (-1;..)7, i=2,...

11. Oren and Spedicato power function, n = 10,30,

f=3" (1-%x2)%, % = (L,...)7.

12. Non diagonal variant of Rosenbrock function, n = 20, 90,

f= ?=1[100 (% - X?)2 +(1-x)2], %0 = (-1,) T, i=1,..

13. Tri-diagonal function, n = 30,

f=[Yra@xi-%xi1)], %o = (L....)7

14. Full set of distinct eigenvalues problem, n = 40,

f= (Xl—1)2 + 2?=2(2xi - Xi_1)2 , Xg = (1;..)T.

15. Shallow function (Generalized form), n = 40,

f= 008, - %2)2+ (1-x2im1)?, %0 = (23).

16. Powell function (Generalized form), n = 60, 80,

f= Z:l:/%[(Xi—3 + 10 X 4i_2)% + 5 (X 4ic1 - Xa5)% + (xai—2-2 x45-1)* + 10 (a3 -
x*)1,

xo = (3,-1,0,1;...)T.

17. Wood function(Generalized form), n = 60,100,

Z:-L:/%f = [100 (xai—2 - x§;_3)% + (1- xg5-3)+ 90 (xai - x%;_1)? + (1 - X4i=1)”

+ 101 (x i - 1)% + (xg- D2 + 198 (x5 - D)(x4i1), X0 = (-3,-1;-3,-1,.)T.

Department of Computer Science
Faculty of Science

Beirut Arab University

P.O. Box 11-5020, Beirut
Lebanon

email: imoghrabi@bau.edu.lb

