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THE RANDOM SIGNALS SATISFYING THE PROPERTIES OF THE
GAUSSIAN WHITE NOISE

BYUNG SOO MOON AND LEROY B. BEASLEY”

ABSTRACT. The random signals defined as sums of the single frequency sinusoidal
signals with random amplitudes and random phases or equivalently sums of functions
obtained by adding a Sine and a Cosine function with random amplitudes, are used
in the double randomization method for the Monte Carlo solution of the turbulent
systems. We show that these random signals can be used for studying the properties
of the Johnson noise by proving that constant multiples of these signals with uniformly
distributed frequencies in a fixed frequency band satisfy the properties of the Gaussian
white noise.

1. INTRODUCTION

The Monte Carlo methods{1,7] have been used in many studies to simulate systems
with a turbulent fluid component which is modeled by an Ornstein-Uhlenbeck equation.
The simulation methods are employed because it is difficult to conceive of a determin-
istic mechanism for generating a velocity field with disordered fluctuations over a wide
range of scales. The velocity field used in the randomization method [2,6] is most often
given by

M M
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In this paper, we study an Ornstein-Uhlenbeck equation of the form

RI(t) +V(t) - Lf‘%—(:—) =0 2)

where T is the temperature, R is the resistance, I(t) is the electric current, L is the
inductance, and I'(t) is the Gaussian white noise [3,4]. Our interests are in the the
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Johnson noise which is the fluctuating electromotive force V (t) = (2kTR)%I‘(t) satis-
fying the equation (2) in an arbitrary electric circuit.

It is not an easy task to measure V(t) in (2) directly since the amplitude of
V (t) is extremely small, the signal is highly oscillating, and some channel noises must
get picked up in any experimental setup for such measurements. Hence, a simulation
technique is necessary in order to study the properties of the Johnson noise. In the
following, we give an explicit proof that the random signals of the form

M
T(t)=c Y a;Sin(2rfjt + b)) (3)
J=Mo
satisfies the properties of the Gaussian white noise, where a;’s, b;’s are uniformly dis-
tributed random numbers in [0,1] and in [0, 2] respectively, and f; = fr, + j where fr,
is a nonnegative integer.

In our earlier work [5], we have shown that the random signal (3) satisfies the
properties of the Gaussian white noise when the frequencies f;’s are also from a uni-
formly distributed random integers in a fixed frequency band, e.g. in [220,1.5 x 220].
Note that the random signal in (3) can be identified the same as the function in (1).
In the following, we prove that the frequencies do not have to be random so that the
random signal (3) satisfies the properties of the Gaussian white noise. Note that if (3)
is substituted in V(t) = (2kTR)%F(t) and the resulting V'(¢) is substituted in (2), then
the differential equation can be solved. The resulting solution verifies the experimental
observation that the electric current I(t) in (2) behaves also like a Gaussian white noise
signal when it is in a steady state after the period of energy dissipation, i.e. after the
exponential decay period.

2. RANDOM SIGNAL WITH GAUSSIAN WHITE NOISE PROPERTIES

A random signal is a Gaussian white noise by definition if it is normally distributed
with a zero mean and if the samples at two different times are uncorrelated. In practi-
cal applications, the signal is given as a finite set of discrete sampled points and hence
its Fourier transform must be finite, i.e. only a finite number of frequencies are used.
Note that if K is the number of sampled points, then there can be at most only K/2
frequencies with nonzero amplitudes based on the Nyquist theorem.

Thus, the Gaussian white noise that we are concerned with must have a fre-
quency band. A typical example of the frequency band is [5 x 2!9,1.2 x 2?°] and the
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corresponding sampling time is h = 3X220 Hence, we restrict our attention to random
signals of the form T'(t) = CZ;‘V; a;Sin(2n fjt + b;) where f;’s are integers in [fr, fu]
for some positive integers fr and fy with f; = fr + j. We show that if the random
variables a; and b;’s are uniformly distributed, then the signal generates a Gaussian
white noise, i.e. E[['(t)] = 0 and E[l'(t)['(t')] = 6(¢ — ¢'). Note that we won’t have
to prove E(I'(#)T'(t)) = 1 as this is achieved by choosing a proper constant c¢. In the
following, we let @ = {T(tx)|k = 1,2,...00} where t; = % and let X} be a random

sample of the N consecutive points from 2. Then we have the following, a simple proof
of which is found in [3].

Lemma 1. Let X, be as defined above, then the random variable v = % 21]:]:1 X
is normally distributed.

Lemma 2. Let X = rsinf be a random variable with r € [0,1], 6 € [0,27] as
random numbers. If r and @ are independent and if # is uniformly distributed, then
the expectation value of X is zero.

Proof. Let rp, = nAr, 0, = mAG, Xy, = mpSindy, with Ar = % and A8 = %’r
and let A, = {(r,0)|rn, <7 < 7rp+ Ar,8, <0 < 6, + Af}. Due to the indepen-
dence of r and 0, we have p((r,0) € Apm) = plrn <7 <1 + A1) X p(f £ 0 <
Om + AB) = ¢(r,) Ar X 27r, where ¢(r) is the probability density function for the ran-
dom variable 7. Thus, we have E[X] = limy_,0o S0 3N _ P((r,0) € Anm)Xnm =
th_,oo Zn 1 Zm_l d(rn)rnSind, 2522 Agfa

fo ré(r {fo Sinfdf}dr = 0. Q.E.D.

Lemma 3. Let ai and by are random numbers in [0, 1], {0, 27] respectlvely If by.s are

uniformly distributed, then for any € > 0, we have limy_,00 p(| % Zk:l apSin(bg)| >
e) =0.

Proof. Let X = aSin(b) and Xy = apSin(bg) for £ = 1,2,--- ,N. Then by
Lemma 2, we have E(X) = 0 and hence using the weak law of large numbers, we
have p(|& S0, Xk| > €) = 0. QE.D.

Lemma 4. Let fbe an integer and t;, = kh with h = &. Then we have "8, Sin (27 ft+
b) = Sin(b) and _, Cos(27fty, + b) = Cos(b).

Proof. Let zo = e w = e and zk — i7"+ Then we have 2z = zowk
and hence }:k OSm(27rft;C + b) = Im( Zk o02k) = Im(zo Zk o Wh) = Im(2o15 “’NH).
Now, note that w? = e?27fAN = ¢127f — | gince hN = 1 and f is an integer. Hence the
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sum becomes I'm(z) = Sin(b). A similar proof the cosine part is omitted. Q.E.D.

Corollary 1. Let N = 2" for some positive integer n > 3 and let h = %, ty =kh. If f
is an integer in [1,2"~!), then we have Eszl Cos(4rft) = 0 and lecvzl Sin(4m ftg) = 0.

Proof. By Lemma, 4, we have Egzo Cos(4rftx) = 1 and Zszo Sin(4w ftx) = 0 with
b=0. Now, by moving the first terms of the sums in the left hand side to the right, we
obtain the results.

Theorem 1. Let ['(¢) be as defined above and let t; = % Then for any € > 0, we
have

1 N
Jim p(| gof(tk)l >¢€)=0

and hence E[['(t)] =

Proof. Note that & T'(ty) = Z,Ijzo{zjlvil a;Sin(2m fitg + bj)}=
Ejjvil aj{Z,]cV:O Sin(2rf;ty + b;)}. By Lemma 4, we have Zszo Sin(2rfity + b) =
Sin(b) and hence ZkN:o L(ty) = }:]Ail a;Sin(b;). Now, we apply Lemma 3 to obtain
limy o0 P(| Ei\;o ['(tk)] > €) = 0 and hence we get E[I'(¢)] = 0. Q.E.D.

Fig.1 shows an example random signal I'(t) = Z?:l Sin(2n f;t+b;) sampled at a
rate of 2! per second. One can see from the figure that the signal is oscillating around
0, i.e. E(I'(t)) =~ 0. A direct calculation shows in fact that E(T'(¢)) = 0.9 x 1075. Next,
we consider the relation E(T'(¢)['(t')) = é(t — '), i.e. the correlation coefficient between
vy and wy, where vy and wy are samples of size N taken at different times. Recall
that the temperature is constant so that the squared length of the vectors vy and wy
must be the same and hence if the correlation coefficient approaches zero then so will
the cross product sum.

Theorem 2. Let a; € [0,1), b; € [0,27) be random numbers, and f; = fL + j be
for some nonnegative integer f; and j = 1,2,..., M. Assume that a;?’s and b;’s are
uniformly distributed and let I'(t) a;Sin(2n ft +b;). If ¢/ =t + 7 for some
7 > 0, then we have

\/’_211

lim [ lim p(— ZI‘tk (ty+7)>¢€)]=0

M—o0o N—oo

and hence we have E(I'(¢)['(¢')) = 0 whenever ¢ # t'.
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FIGURE 1. Sample Random Signal (N = 21%)

Proof. Let ¢; = 2n f;7+b;, then we have ['(t+7) = \/— E] =1 a;Sin(2w fjt+c;). By

exchanging the order of sums, we have + Ek:l (tx)T(te+7) = 57 Zl =1 a;ia;{+ Zk 1
Sin(2m fity + b;)Sin(2m fitx + ¢;)}. The product of the two sine functions can be ex-
panded to obtain four terms; (1)Cosb;Cosc;+ fo:l Sin(2w fitk) Sin(27 f5tk),

(2) Cosb;Sincj+ Eszl Sin(2n fity)Cos(2m fitk),

(3) Sinb;Coscj& Sop_, Cos(2n fity)Sin(2n fitx),

(4) Si'nbiSincj% Z;CV:I Cos(2r fitk)Cos(2m ftx).

Note that as N — oo the sum in (1) approaches f01{003(27r(fi — fi)t) — Cos(2m(f; +
f;)t)}dt which is zero unless ¢ = j. The same holds for all of the other three sums.
Thus, the first term becomes

S M a2Cosb; CosczNEk , Sin? (2 fitg) = M a?Cosb;Coscizss SN (1—Cos(4n fitk).
Now the sum of the Cosine terms become zero by Corollary 1, and hence we have
5 Zl L @2Cosb;Cosc;. Applying the same method, one can easily check that (2) and
(3) become zero, and the fourth term with (4) becomes 3 M a?Sinb;Sinc;. There-
fore, by addmg the two nonzero terms and usmg the relation ¢; = b; + 27 f;7, we
obtain 337 Zl L a2(Cosb;Cosc; + Sinb;Sinc;) = 557 Zl_ a?Cos(2r f;7). Finally, note
that the set of points on the unit circle corresponding to {27r fitli = 1,2,...M} are
uniformly distributed as M approaches to infinity. Hence, one can apply a similar argu-
ment as in Lemma 3 to prove that lima_,cop(| 27 21_1 a?Cos(2r f;T)| > €) =0. Q.E.D.
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To verify that the above theorem is correct, we performed various calculations
with different values of N and M. Table 1 shows a summary of the results for the cases
with N = 21¢ and with different values of M. In Table 1, the means and the standard
deviations are for the 1,024 values of I'(¢)['(¢ + 7;) with 7; = j X 2716 j=1,2,...1,024.
Table 2 shows how the correlation changes as N increases. Fig. 2 shows the computed
values of E(I'(¢{)['(t + 7)) for different values of 7 when N = 2'6. Two different values
of M, ie. M =2'% and M = 2!2 are used for the two curves in fig.2. One can see that
E(T(t)T'(t + 7)) decreases to zero sharply as M increases.

Table 1. Sample Calculations of T(t)['(t +7) ~ 1

N M Average Standard Deviation
216 916 [ _3 695 x 1076 3.847 x 1073
216 2151 _1.138 x 1076 4.510 x 1073

216 9l | 5970 x 1075 2.430 x 1072
216 913 | 4972 x 10~* 4.313 x 1072
216 9121 1124 x 1073 7.492 x 1072

Table 2. Sample Calculations of F(t)['(t + 7) - 2

N M Average Standard Deviation
216 9151 _ 1138 x 10~ 4510 x 1073
215 2141 9972 x 1076 6.564 x 1073
214 913 | _9.710 x 107° 9.084 x 1073
213 2121 _1.426 x 1074 1.336 x 102
212 oll | _6.282 x 1074 1.836 x 1072

Corollary 2. Let a; € [0,1), b; € [0,27) be random numbers, and f; = f1 +j be
integers for j = 1,2,..., M. Assume that af and b; are uniformly distributed random
variables on the specified intervals. If I'(f) = czjj\il a;jCos(2m fjt + b;), then ['(?)
generates a Markov process approximately for some constant c.

Proof. This follows from Theorem 1 and Theorem 2.

3. CONCLUSION

We gave an explicit proof that the random signals used in the double random-
ization method satisfy the properties of the Gaussian white noise. The random signals
we used are low pass filtered so that they agree with the cases of actual measurements
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FIGURE 2. Sample Random Signal (N = 2'%)

where the low frequencies are filtered to reduce the channel noises. According to our
proof, however, if the high frequency components are filtered, then the correlation of
the signal starting from two different times may become different from zero. Since the
random signals we studied satisfy the Gaussian white noise properties approximately,
they can now be used to study the statistical properties of the Johnson noise for the
Johnson noise thermometry.
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