INEQUALITIES FOR JACOBI POLYNOMIALS

  • Pyung, In Soo (Department of Mathematics Republic of Korea Naval Academy) ;
  • Kim, Hae Gyu (Department of Mathematics Education Jeju National University of Education)
  • Received : 2004.02.11
  • Published : 2004.02.28

Abstract

Paul Turan observed that the Legendre polynomials satisfy the inequality $P_n(x)^2-P_{n-1}(x)P_{n+1}(x)$ > 0, $-1{\leq}x{\leq}1$. And G. Gasper(ref. [6], ref. [7]) proved such an inequality for Jacobi polynomials and J. Bustoz and N. Savage (ref. [2]) proved $P^{\alpha}_n(x)P^{\beta}_{n+1}(x)-P^{\alpha}_{n+1}(x)P{\beta}_n(x)$ > 0, $\frac{1}{2}{\leq}{\alpha}$ < ${\beta}{\leq}{\alpha}+2.0$ < $x$ < 1, for the ultraspherical polynomials (respectively, Laguerre ploynomials). The Bustoz-Savage inequalities hold for Laguerre and ultraspherical polynomials which are symmetric. In this paper, we prove some similar inequalities for non-symmetric Jacobi polynomials.

Keywords