LAY A RS E] =52 AR A43(2004. 12)

On uniform asymptotic stability of the
nonlinear differential system
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Abstract We investigate various ¢(¢)-stability of comparison differential equations and
We obtain necessary and/or sufficient conditions for the asymptotic and uniform asymptotic
stability of the differential equations x" = f(¢, x)
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1. Preliminaries and Definitions
Lyapunov second methods are now well
established subjects as the most powerful
techniques of analysis for the stability and
qualitative properties of nonlinear differential
equations " = £(¢t, x), x(#) = xy=R",

One of the original Lyapunov theorems is as
follows:

Lyapunov Theorem. For x = f(¢, x), assume
that there exists a function V: R, x S, > R,
such that

(i) vis (Cl-function and positive definite,

(ii) Vis decresent,

Gy E V(D) = V(LD +V, - LD _

—a( || x|) for t =0, xS ,, where
Se={xeR"|| x| <p} for p>0, alr)
is strictly increasing function with () =0,
Then the trivial solution x(#)=( is uniformly
asymptotically stable.
The advantage of the method is that is that it
does not require the knowledge of solutions to
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analyse the stability of the equations. However
in practical sense, how to find suitable Lyapunov
functions V for given equations are the most
difficutt questions. Hence  weakening the
conditions (i), (i), and (i), and enlarging the
class of Lyapunov functions are basic trends in
Lyapunov stability theory [2, 3, 4, 5, 6, 11].

In the unified comparison frameworks, Ladde
[71 analysed the stability of comparison
differential equations by using vector Lyapunov
function methods.

Lakshmikantham and Leela [9] initiated the
cone valued Lyapunov function methods to
advoid the quasimonotonicity assumption of
comparison equations. They obtained various
useful differential inequalities with cone-valued
Lyapunov functions. Akpan and Akinyele [1]
extended and generalized the results of [7,8] to
the dy-stabilities of the comparison differential
equations by using the cone-valued Lyapunov
functions.

Here we generalize, in some sense, the results
of [1] to the ¢(f)-stabilities of comparison
equations below.

Let R* denote the j-dimensional Euclidean
space with any equivalent norm | . ||, and scalar
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product (, ). R,=[0,%). C[R.xR", R"]
denotes the space of continuous functions from

R xR”" into R~

Definition 1.1 ([11]). A proper subset K of
R7 is called a cone if () AK CK, A=0; (@)
K+KCck (i) K=K v K+@ W
KN(K) ={0), where K and K° denote the
closure and interior of K respectively, and JK
denotes the boundary of K The order relation

on pR* induced by the cone K is defined as
follows:

For x,ye R", x<,y iff x— ye K, and
x<pyiff y— xe K°.

Definition 1.2 ([11]). The set K* = {¢=R™
(¢, x)=0, for all xe K} is called the adjoint
cone of K if K= itself satisfies Definition 1.1

Note that yegK if and only if (¢,x) =0
for some ¢ < Ky*, where K;= K —{0}.

Consider the differential equation

=t x), Ht)=xy t;=0 1)

where fe C[R,xR", R"] and A£,0) =0
for all ¢f=(. Let
S,={xeR": | xl <o}, 0>0. Let KC R*
be a cone in R” un<N. For

VeClRxS,, K] at (t,x)€R xS, let

im ()
D*WVt, x)= wo \ b/ [V t+h, x+hht,
x)) — V(t, x)] be a Dini derivative of V along
the solution curves of the equation (1).
Consider a comparison differential equation

u=g(tw), lty)=u, t;=0 @)
where ge C[R . xK, R"],g(t,0)=0 for all
t>(0 and Kis a cone in R*
let S(o)={ucsK: | ul <p}, 0>0. for

ve CIR xS(p), K], at (4, u)eR ., xXp), let
Dot - B (G o C+h wkree )y

be a Dini derivative of ¢ along the solution
curves of the equation (2).

Definition 1.3 ([11]). A function gD —R™",
DCR” is sad to be
nondecreasing relative to the cone K when it
satisfies that if x, yeD with x< xy and (4,

y—x)=0 for some @¢EK;., then (@, &) —
(%)) =0-

quasimonotone

Definition 1.4 ([8,10]). The trivial solution
x=( of (1) is equistable if for each
&0, tye R 4, there exists a positive function
8=0(#( & such that the inequality | x|l <3
implies || x( £, ty, x¢) | <g, for all = ¢y,

Other stability notions can be similarly defined
[8,101.

Now we give cone-valued ¢(#-stability
definations of the trivial solution of (2).

Definition 15 ((12)). Let ¢:[(,c0] >K * be
a cone-valued function. The trivial
u=( of (2) is

(a) (H-equistable if for each )0, ER,
there exists a positive function 6=, €
such that the inequality (&), <3S
inplies (K¢, {$))<e for all =t where
AP is a maximal solution of (2);
uniformly  §(p)-stable if the ¢ in (a) is
independent of £

solution

(b)

(c) quasi-equi asymptotically §(-stable if,

for each &0, #,€R™, there exist
positive numbers 6=&1#y) and T=T(¢;, &
such  that (K20, ) <§ implies

(D, HD)<e for all t=t,+ T

(d) quasi uniformly asymptotically ¢ j)-stable
if the numbers § and 7T in (c) are
independent of £
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(f) uniformly asymptotically ¢(#-stable if (b)
and (d) hold together.

In Definition 1.5 and for the rest of this
paper, #p denotes the maximal solution of (2)
relative to the cone Kc R "[11].

Remark. When () is a constant in Kj* the
#(H-stabilities are the same as in[1,11].

Let following comparison property plays a key
role in our main theorem.

Lemma 16 ({9,110]). that @)
VedR. xS, K|, V(¢ x) local
Lipschitz condition in 4 relative to K and for
(t,0€R*x S, DTV ¢, )< gg(t, WE, 2)); (i)
geClR; xK,R"] and g(t, ) is quasimonotone
in 4 with respect to K for each (€R,.

If #ity, ) is a maximal solution of (2)
relative to K and (f, %), %y is any solution of

Assume
satisfies a

(1) with Wy, x9)< gu,, then on the common
interval of existence, we have W, (¢, ¢, up)
S}(?(t, to, uo).

2. Stability Theorems

In this section, we investigate sufficient
conditions for  g(j-stability, uniform &3
-stability and asymptotic ¢(f)-stability of the
trivial solution gz=() of the comparison equation
(2). We also investigate the corresponding
stability concepts of the trivial solution x=( of
(1) using differential inequalities with the method
of cone-valued Lyapunov functions.

Theorem 2.1. Assume that

@) vedR <o), K], «t,0)=0, At, u) is
locally Lipschitzian in 4 relative to J) and for

each (t, w)eR xS(0),D*u(t, W< g0,
(i) geClR,.xK,R"], g(t,00=0, g(t, w) is

quasimonotone in ¢ relative to K
(iii) PHeK =is a bounded continuous function

on [0,00) and o (K2), {OI<(KD, L, 1))
for some function €K, {=¢,,.

Then the trivial solution =0 of (2) is &9
—equistable.

Proof let g>( be arbitrarily given and let
M=sub { | ¢(D | £=t;}. Since g-YMa(p) is
continuous and g ~Y(Ma(0)) =0, there exists £ >0
such that g~ Ma(np))<e for 0<7p<e,. Since
£,0)=0 and ¢(¢, 2) is continuous in 4 given
a(e >0, 8,=6,(t,dey)
such that | g <&, implies

| (g, up) I Caley). Now for the bounded
continuous  function HDEK*, (42, up)<

FCt) Il Naegll <1l @(2p) I 6, implies (B, ut,,
u )< HD | - de,). Put 0= Kty [ 8,. Then
(#(t)), up)<d implies (D, tq, uN<IKDI -

| Aty ) | <M - ae)). Let o3 be any solution
of (2) such that (#¢y),ty))<S Then by (i),
At h D)< il by, ug), £2t,. Thus (ty),4ht)) < 8
implies af (o), Wt NIS(KD, 8, U D)<
(KD, Kby, llt <M -de;). Hence (K, D)<
a Y (M a(e)))<e which completes the proof.

tyER,, there exists

Theorem 2.2 Let the conditions (i) and (i) of
Theorem 2.1 hold. Assume further that for some

condinuous function KHEKy*, for each (¢ 0)e
R »xS(0), D* (¢, (¢, W))<0 and

d (D, {NI<(KD), A t, d D)<Y (KD, {)],
a, beK

Then the trivial solution
uniformly ¢(#)~stable.

Proof. For ¢£>0, let §=b"ae) Letu(d
be any solution of (2) such that (#¢y), ug)<d.
Then by the hypothesis, (§(9), (¢, 24#)) is decreasing
and so (&), A¢, dON<(Hty), Lty, hty)) for all

t=ty.  Thus o (KD, {DI< (KD, Lt, LD))
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(ty), Ly, ht)<H (¢ty), {tN]= (K1),
u) KK =b " de))=a(o. (&2,
(1)< & implies (KD, {H)<e for each 1=t

Hence

Theorem 2.3 Let the conditions of Theorem
2.1 hold. Assume further that

DY HD, At, )<—d (KD, ¢, w)] for each
t=t,, where {ER,, cEK 3)

Then the trivial solution
equi-asymptotically ¢(#-stable.

Proof. By Theorem 2.1, the trivial solution of
(2) is (H-equistable. By the formula (3),

(4D, s,

hence the limit

D)) is monotone decreasing in ¢ and
vi= ltirn(@(t),v(t, u(9))

exists. Suppose gk (. Then (p*)=0, ceK.
Since #) is monotone,

d (KD, «t, h D)) =v*), and so

DHHD, Lt, )<~ (KD, t, w)]<—c(v%)-
Then

[ :D B, ols, uMas< [~ dom)as

Thus (K9, ¢, D)< —c(v*)t—to) Hty,
Ut up). Accordingly, as t—oco, we have (g3,
¢, ¢ #))) — —oco. This contradicts the condition

d (KD, ()< (KD, L¢t, «($))). Tt follows that
vk=0 Thus (&), ¢, D)0 as  fooo.

Hence given g)(), and for each #,&R,, there
exist 0=&tp)and T=7T(tye such that for all
t=to+ T, (Ktg), ug)<S implies (KA, {D))<e

Theorem 2.4 Let the hypothesis of Theorem
2.2 hold with

D¥ (D), t, dDN<—d (KD, HH)]

for each t=t; where #f;=R, and for some
ceK

Then the trivial solution =0 of (2) is
uniformly asymptotically ¢(f)-stable. Let ¢
be arbitrarily given. Choose §=§¢) which is
independent of £, Let 47 be a solution of (2)
such that (), #)<S Let =

sup {(Kd, L, (D)) (&ty), up)<8.
Set Te)=uv*/c(e). we claim that

(Kty), up)<8 implies (KD, {P)<e, t=ty+
To. (4)

Suppose that (4) is not true. Then there
would exist at least one #=#;+ 7(e) such that

(ty),

# )< 0 implies (¢(P, {D)>e. Since ce K,
from the the condition D *(&(d), v(t, u(9))) <

— [ (D), D) ],we have D T(d(D), (¢, u(t
)< — [ (¢(8), (D)) < — c(e). Integrating,
Jf DH(H(s), s, u(s»)dssf — de)ds

iy £y im-
plies that (#(8, v(t, u (D)) < (d(ty), oty ug)
—c(e)(t—ty) for all t=ty+ T(e).

Then 1}{{}0((25( D, v(t, u(t))= —co

contradiction.

which is a

Theorem 2.5 Assume that

(i) VellR xS, Kl, V(£x) is locally Lip-
schitzian in x relative to K and for (f,x) €R .
xS ,, DTVt x)< xe(t, V(1 x)),

(ii) geClR ,xK,R"] and g(t,4) is quasi-
monotone in # relative to K for each t€R
(iii) there exist @, b= K such that for some
¢()eK,., for each x€Sp, b(| x| )<(¢
(0, Vit,xD<a(l x]), t2¢t,20

Then the trivial solution x=0 of (1) has the
cor- responding one of the stability properties if
the trivail solution u#=1_0 of (2) has each one of
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the #(#)-stability properties in Definition 1.5

Prodf. Suppose that the trivial solution 2= (of
(2) is @(DH-equistable. Let 0 < e< p be
arbitrarily given and ¢¢SZXR ;. Then there exists
for all §=0&(%y,&)>0 such that

(#(29), u)<8 implies (p(1), #(1)) < be)
for all f=%( where #(#) be a maximal solution
of (2) relative to K For given ¥¢= x(fp)€S,
we can take #g=1u(fy) in K such that

a( | x(xg) | )=1(4(24), u(t;)) and

Wiy, () < guy,

Note that if (420,%) is any solution of (1)
such that Wtg,x(£y))< g , then by Lemma
16, V(t, X(D)< gD,

From (iii), we may assume that V(¢ 0)=0.
Su- ppose u K" and (&(ty), % ()<8. Since

Wty,x%0) is continuous in x , there exist
—6(7"0)>O such that W#4,%0)< gy for any
lxgll <8

Now choose 63>0 such that a(61)<6 and

81< 8 Then the ineqalities | x(#4) | <& and
a( | x(¢y) | <& hold simultaneously. Since &( |
(O 1)< (D), V(¢,2(D))) <(4(8), »(9)
< b(e) for all t=tg, | x(ttg,x4) | <& whe-
| x(£4) | <&, Hence the trivail solution
x=0 of (1) is equistable.

In the above,
independent of % , the uniform stability follows
from the same argument.

Suppose that the trivial solution 47 0 of (2) is
quasi-equi asymptotically (5~ stable. Then,
following the same arguments for all £=f,+ T(e)
=&ty e<e
a( || x4 1) < dsimu-

never

choosing &= 8(e) which is

there exists a positive function

satisfying | x,) <& and
Itaneously.

It follows that |Jx,ll <8 implies
Mt 2, 20) | <&, t=ty+ T(e).

If this is not true, then there exists, a
{4}, t,=ty+ T such that
Iz, %, x4)} for some || x,< 81 <8, k=1,2,3.
Using (ili) and Lemma 16 we have Ko<
(dt,@),'\/(l‘k,x(ik,to,xo)))S(dtQ, Ktbto,uo)xb(é‘)f or
some #peK which is a contradiction. The other

stability properties can be similarly proved.

divergent sequence

Theorem 2.7 Assume that
(i) g€ CIR  xK,R"],g(4,00=0) , g(t, )
is guasimonotone in # relative to K for each
teR,
(i) (¢, n() < p($(D), u(D), BEK,),
u(¢) is a solution of (2)
If the trivial solution u=0 of (2) is uniformly
asymptotically @(#)-stable, If the trivial solution
u=0 of (2) is uniformly asymptotically #(¢)

~stable, then there exists a cnve valued
Lyapunov function v with the following
properties

(A) ve C[R xS (p), K], v(t,0) = 0,

v(t, u) is locally Lipschitzian in u relative to K
for each (€R ..

(B) For some K8 €K -

(6D, o(t, u (1)) <bl ((D), (D)), a,beK.
(C) For (L, w) ER XS*(t"), and for p(p is
increasing and bounded, D T(#(9, v(t, u)) <
k—p (D($(D, v(t, u)), where p (#) exists.

Proof. Let #=u(4,0, u)so that =0, ?, %)
Define a cone-valued function #(?, #(?)) by

u(t, u(D)) = exp (—p(NA (S8, (D) e,
,0,0 (w0, 1, w)) (11)

1
where CL(¢(9), HH)]= (pll—exd[—D
(¢, 7D, (011 D>0,p D

0.x)is the function defined in (7) ; and

exist and
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u(t, uis any solution of (2). (KD, o, U(D)) = exp(—~pxD)A (KD, { DX

When #=0, then the right hand side of (11) ¢(8), (0,0 ,(u(0,¢ %)) 2qC[ (#(H, {(£))18 !
vanishes so that »(#,0)=0. Using (i) and [(#(d,(d)] by condition (ii)

Corollary 2.7.1 in [5] and for %, u < S(0) = o[ (¢(D), ()], acK since G B 'eK
Fo(tu)—ut,us) ) ¢ = || exp(—p(D)CL(p Where g= oo exp(— p(£))

(D, D) u(£,0, 0 (2, 0, t, % ))- exp(—p(f)  Hence al (¢(H, () 1< (8(8), v(¢, )< bl (

YL (B0, A D)) us(£,0, 0 {250, 4 | #(8), ()], a, b K.

< (NI 6 (10, 8, 20)) —0,(u, 0,1, YT uthelt, ) =ult 0
ot <  BO | u+t hg(t,u)— u(t+h, t,u)| -
xexp | L(s)ds tz, ) + o(t+ h, u(t+ b, t, ) — ot
e 0 < ey gy SERRE ARl ) =l )
Iim
(,t where ‘to
DI lee,—u, | sexp JOL(S)dg Dividing both side by %> ( and taking limsup
as 20", and using (11) and unoqueness of (2)
=B lu,—uyl 6 we obtain

where

B(H= 1D | wl exp (— KD ($(D
AN exp fo L()ds=0

D (D), t, )< lim
0

CL(@(t+n), v(t+ )] x($(D), u(t+ k1,0, 0 ,(
(0, t+ h, w))) —exp(— p(H)CL(8), () I(

Now $(D), u(1,0, 0 ,(u(0,2,w))] = exp(—p(H)C
8 E+6, 1) — it ) || A £46, u®) — 148 [(s(D, (D) I(d(D, u(t,0, 0,0, £, )))) x
v |+ 48, — A 46,2t +8, sl ut I

) |+ | (46, il t+8, ) — 1L, 1) | L
Since (¢, u) is locally Lipschitizan in % and v —2 (9($(D), v(t, ).
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