The Journal of GIS Association of Korea, Vol 12, No. 4. pp. 307-319, December 2004

A GML Data Storage Method for Spatial Databases

Ho-young Jeung* - Soo-hong Park**

ABSTRACT

Managing GML data in traditional database systems is not efficient since it has not only
characteristics of spatial data but also features of (semi) structured XML documents. XML
enabled database systems can manage XML data efficiently, however they cannot handle spatial
data. Spatial database systems are good at spatial data handling but those are inefficient for
XML data. This paper proposes a storage method of GML data for spatial database systems in
order to solve the problems. The proposed method generates spatial database schemas from
GML application schemas and store GML data into SDBMS through the generated schemas. A
prototype of the storage method has been implemented on the PostgreSQL/SPE system to show
the proposed method is appropriate for storing GML data. As a result, the implemented system
was able to store various GML data which had diverse XML structures and different size.
Stored data size was smaller than GML files. Furthermore, spatial, non-spatial, and mixed
content queries could be performed over the stored GML data as quickly.

Keywords : GML, Spatial Databases

(o] ok
i -

GML dlo|H& dutAd &x}, 2 FH 9] dolelohe th2A FItv e 54
I (F) FRAHAXML dlojele] HAHE FAl Uil Qo] iE ulo]EjH]o] 2ol A
#He = 7] FET XML AFo] 7hsg HolEuojA= GML HoJHE 8307 A
A% 4 JARE, FtdelE A sFo] FFHehal, FRHolEHo]e XML H o]
2 A As7) o}egu}. B E=Zd X GML HolHE %—ﬂtlolﬂﬁﬂolé@l A7gste] 7]
f«] TAMES SZsnA gk ol st GML §-8& 27wt FF OGCAlA A

by ztdlolEw o] 29 A7)l HEAE 5 e WHS AUSIAL PostgreSQL/SPE
28 7o g Z2EES] A2HE s 1 23 oYd vls 2dd
XML 48 7& RS 3311 e GML dHolH o] At 7IH-& Tt 33t

* Master Studnet, Department of Geoinformatic Engineering, College of Engineering, Inha University, jeung.hy@gmail.com
** Assistant Professor, Department of Geoinformatic Engineering, College of Engineering, Inha University, shpark@inha.ac.kr

307

Ho-young Jeung - Soo-hong Park

gl o] B o] 20l A=

T AL A=

dolEle] =¥ GML Y2 A o

B d4stA He ke AASHAT £ AFE dolgel et $3, W 3k

9 EY AelE FAshe A4Y GML
£47 599 & 9ee nYoh

F80] : GML, F3tul| o] o]

1. INTRODUCTION

1.1 Background and Research Objectives

Extensible Markup Language (XML)[1] is
emerging as the standard of data exchange
among web applications and Geography
Markup Language (GML)[2][3] is getting
more popular to web-based Geographic
Information System (GIS) applications likewise.
Most of the GIS applications store geographical
data into database systems. Hence, storing
and querying GML data from database
systems are very important to support the
spatial data exchange trends through the web.

Spatial database management systems (SDBMS)
designed to handle very large amounts of
spatial data stored, using specialized indices
and query-processing techniques[4][5]. Therefore,
stored GML data in SDBMS could be very
efficient to handle spatial information. However,
storing GML into SDBMS is a very hard
work since SDBMS are not designed to
handle (semi) structured data like XML.
Recently, many mechanisms which XML
documents are able to be managed by
databases have been studied. Despite the many

nj

EEESIEEV IEEERIEE LA B

researches, those studies are not suitable for
GML documents because GML data has several
specific characteristics unlike XML documents
such as geometric attributes of features.

Therefore, there are a couple of possible
solutions to manage GML data in database
systems. One gives spatial functionalities to
XML storable DBMS and the other makes
SDBMS XML-enabled. This study selects the
latter and describes how GML can be stored
to spatial databases and performed both of
spatial and non-spatial queries.

The primary goal of this study is to
present a storage technique for using spatial
databases to store, query, and manage GML
data.
research brings strategies of XML storage

In order to achieve this goal, this

into spatial database domain and develops a
prototype system which integrates the special
needs of GML data into spatial databases. In
addition to

technique is possible, this study experiments

proving that the proposed

various spatial and non-spatial queries over
the stored GML data.

objectives of this research are :

Specifically, the

» to select suitable XML storage strategies
for GML;

308

A GML Data Storage Method for Spatial Databases

» to define mapping rules from GML to
spatial databases;

» to implement the above strategies on a
SDBMS;

» to explore the possibility of managing
GML in the prototype system with the
result of query evaluating;

1.2 Related Work

Corcoles and Gonzalez evaluated several
XML query languages and identified key
features required for specifying spatial queries
over GML documents[6]. They showed that
non-spatial queries could be directly answered
with XQuery[7] but spatial queries required a
rich set of topological predicates and spatial
analysis functions. They proposed a GML
query language called GML-QL which extended
the XQuery to support spatial query operations.

They also studied the behavior of different
alternatives over XML documents applied to
store and query GML documents[8]. The
alternatives selected use relational schemas to
store GML data and three approaches (one
structure-mapping, two simple model mappings)
have been used. The experimental results
showed that the structure-mapping approach
was efficient for their previous study.

Shrestha had large volume of research in
XML technologies for GML storage[9]. The
study experimented many approaches of XML
storage using both of structured storage and
unstructured storage in XML-enabled systems,
as well as native-XML databases like hybrid
storages. He executed non-spatial queries over

GML and tested XML-specific functions like
transformation, construction of new elements,
document retrieval and so on. However, he
found spatial queries can not be executed and
it needed to develop GML query processors
in XML database systems.

Most of the previous researches in this
section have been based on XML storable
database systems to manage GML data. The
key difference between this research and the
previous researches is that this study proposes
a new approach using a spatial database system.

2. Selecting GML Storage Strategies

2.1 XML Document Management Models

There have been many techniques developed
for XML document management. These techniques
are able to be divided into four primarily
management models which are file systems,
general database systems, native XML database
systems, and XML extensions of traditional
databases.

XML documents are often stored in file
systems and it is the easiest way to store but
it lacks fast and efficient support for large
XML files. This model

indexing or external searching even though

is hard to have

XML document access tools are a lot.
Traditional database technology brings many
benefits to XML document management (e.g.,
recovery, concurrency control, and high level
query capabilities). However, it has been

designed to handle semi-structured XML data.

309

Ho-young Jeung - Soo-hong Park

Native XML databases are databases designed
especially to store XML documents. Like other
databases, they support features traditional
databases have. The only difference from other
databases is that their internal model is based
on XML and not some others, such as the
relational model. XML-enabled systems are
databases with extensions for transferring data
between XML documents and themselves. Some
of these also support native XML storage.

Flles n

Tearlil e Drsbitbeessio

RDB || 0oDB || ORDB |

XML ; ~
documnets ! ~, | atve
\ XL 08

Figure 2. XML management models

Since spatial databases are built on
relational/object-relational database technologies,
this study focuses on the traditional database

model as an XML management model.

2.2 XML Storage Approaches for GML

The performance of database systems is
highly affected by storage approaches when
XML data is stored. These storage approaches

can be categorized into three parts, as follows:

» A view of XML : data-centric and
document-centric;

» Designing database schema : structure-

mapping and model-mapping;
» Database models : relational, object-

relational, and object-oriented;

XML documents can be either document-
centric or data-centric. Document-centric involves
a liberal use of free-form text that is "marked
On the other hand,
data-centric documents are typically easier to

up" with elements.

process with computer programs because the
data is better organized. In common, since
GML data is created by generating existed GIS
data sources, not by hand writings, GML
documents should typically be data-centric XML.

In the view of designing database schema,
structure-mapping approach generates database
schema from the logical structures of target
XML documents[10]. Basically, a relation or
class is created for each element type in the
XML documents[11]. Furthermore, database
schemas are designed based on detailed
analysis of DTD[12] or XML Schema[13][14]
through mapping rules[15][16][17]. In the
contrast to the structure-mapping, model-
mapping approach uses a fixed database
schema for all kind of XML documents[10]
[16][18][19]. The fact that GML has predefined
GML schemas allows application based on
GML to estimate what structural data is
coming in. This is remarkably distinguishable
generic XML data.
structure-mapping approaches are difficult

from Even though
to be implemented, those can be a more
efficient storage model[20][21] especially if
databases already know the structures of

310

A GML Data Storage Method for Spatial Databases

target. We can analyze application schemas
where has full information of instance GML
data. Hence, structure-mapping strategy is
the better approach to spatial databases.

Relational database model may produce
database schema with many relations in order to
store XML documents. It may also potentially have
many joins, which would make the queries
expensive to evaluate[5][20]. In the case of
object-relational model, it allows the use of
structured or nested attributes in relations.
These characteristics can be used to map XML
documents onto databases in a more natural
way[16][22]{23]. Morcover, this model can reduce
table join that involves much cost as mentioned
and improve overall performance of database
systems. Spatial DBMS standard[24] is not to
specify database schema for the object-oriented
database model. Therefore, object-relational model
is the best choice for this study.

3. Deciding Spatial Database Schemas

3.1 Conceptual Schema Mapping

An entity, in the Entity-Relationship (E-R)
model, is a "thing" or "object" in the real
world that is distinguishable from all other
objects[26]. It is represented by a set of
attributes that have domain, or value set to
permit values. An entity set is a set of
entities of the same type that share the same
properties, or attributes. A relationship is an
association among several entities. Likewise

E-R concepts, some of vocabularies are

311

defined in the GML specification[3]. An
object is defined as an entity with a well
defined boundary and identity that encapsulates
state and behavior. Association is a structural
relationship that describes a set of links, in
which a link is a connection among objects.

ohject

» entity
property — (attribute >
— <Telationshi>

Figure 3. Conceptual schema mapping

In two conceptual models, since each
definition has similar concepts and models
world phenomena, some assumption can be
defined between them:

» A collection of objects is mapped to
an entity set;

» An object is mapped to an entity;

» A property is mapped to an attribute;

» An association is mapped to a relationship;

On the other hand, all of theses assumptions
may not be realized at lbgical level, or physical
level since XML model and relational/object-
relational model are very different logical and
physical structures. Hence, some special mapping
mechanism is needed.

Ho-young Jeung -

3.2 Mapping Rules

Followings are the summary of the mapping
rules from the previous study[23] :

» Simple elements can be mapped directly
into database attributes;

» Sequences of elements are translated
into a tuple;

» Elements with attributes are mapped
into a database composite attribute;

» XML elements that are optional result in
database attributes may have NULL values;

» Set-valued attributes are transformed
into a database set-valued attribute;

» Repeatable elements which can oceur zero,
one, or several times are transformed into
a set-valued database attribute;

This research proposes GMLType as an
UDT and GMLValue as an UDF. Those allow
that object-relational databases can store XML
elements with complex content model.

» Complex combinations of elements are
transformed into a GMLType attribute;

» Mixed-content type model are transformed
into a database attribute with GMLType;

» Alternatives are transformed into a

database attribute with GMLType;

Since GML properties do not have other
properties as children, one GML property is
transformed into one database attribute.
However, set-valued database attribute should
be allowed in the case of a GML property
has multi values. Table 1 describes the rules

Soo-hong Park

of mapping from GML simple types which
are defined in GML schema file, basicTypes.xsd,
to database schemas.

» 7 describes XML type defined by GML
3 schema.

» () is a function which evaluates the
mapping rules.

» {} represents a set constructor or the
list constructor.

Complex GML objects/properties can be
mapped to another GML object/property created
by evaluating mapping rules. It means that
mapping rules can be evaluated for many
times recursively and finally the initial GML
object/property shall meet the GML simple
content model mapping.

Table 1. GML simple type mapping

GML Simple Types

Database Attribute Domain

7 = NullEnumeration
7 = NullType

7 = booleanOrNull

7 = booleanOrNullList
T = booleanList

7 = stringOrNull

7 = NameOrNull

7 = NameOrNullList
7 = NameList

7 = doubleOrNull

7 = doubleOrNullList
7 = doubleList

7 = integerOrNull

1 = integerOrNullList
7 = integerList

7 = CodeType

7 = CodeListType

7 = CodeOrNullListType
7 = MeasureType

7 = MeasureListType
7 = MeasureOrNullListType
7 = CoordinatesType
7 = SignType

(1) - NULL
U7 — NULL

(1) — BOOL

#(1) — {BOOL}

1) — {BOOL NOT NULL}
(1) — STRING

(1) — STRING

#(1) — {STRING}

1) — {STRING NOT NULL}
(1) — DOUBLE

(1) — {DOUBLE}

1(7) — {DOUBLE NOT NULL}
1) — INTEGER

(1) — (INTEGER}

M(1) — {INTEGER NOT NULL}
i{(7) — STRING

1) — {STRING NOT NULL}
1) — {STRING}

(1) — DOUBLE

1) — {DOUBLE}

1) — {DOUBLE}

(1) — GEOMETRY

4r) — CHAR(1)

312

A GML Data Storage Method for Spatial Databases

In case of geometry type, there are some
differences between GML 3 Geometry and SQL
Geometry which has only linear simple types.
Thus, other GML 3 Geometry types except the
simple types are transformed to GMLType
where stores the values into XML elements.

4. Prototype System

The SPE (Spatial Processing Engine) has
been developed by department of Geomatics,
Inha University for years to research spatial
database technology. That is a kind of a
server extension that manages geospatial data
in the PostgreSQL server[25]. The SPE

The GML extension of the prototype system
is organized into 3 major software components,
(GMLAnalyzer, MapGen, and Loader), which
are further broken down into smaller logical
sub-modules. They work in sequence as following

6 steps :

Step 1. UDF, UDT, and entire system
components are set up as soon as
the prototype system is installed
to PostgreSQL/SPE.

GMLAnalyzer which contains a
GMLParser as a sub-module, starts
to work automatically for building
pre-organized mapping information
from GML schema files.

Step 2.

system is a suitable back-end to apply this Step 3. GMLAnalyzer parses GML application
study since it has implemented most of the schemas and creates an Feature
components defined by OGC standard [24]. MAPPING table where includes
The libXML parser as an XML/GML parser mapping information.

has been chosen in order to extend the Step 4. MapGen analyzes both of the
SPE/PostgreSQL server to be XML-enabled. Feature MAPPING table and the

X installtime

Step1 Settingup UDYT.UDF | .. “

Basic mapping rule ;

Step2 . Loading GML schema | table l :

¢

Importing Ghil. Application

i Lnherit
I Mapping rule table for

Step3 . gohema

instance GML data

Step4 - Generating SDB schema Instance data table with
y calumng
Loading GML. instance
imported GHL data
Step§ data ‘““"*{
v Reglstering to

P o T geomelry_columns

Step 6 ¢ Building metadata table
Rundime

Figure 3. Procedure of the prototype processing

313

Ho-young Jeung -

MAPPING RULES table and generates
table schemas for instance GML data.

Loader parses instance documents
of GML
objects/properties into the Feature

Step S.
and store the values

table. It references to the mapping
information MapGen produced.
Step 6. Loader produces metadata such as
envelope, name, and description
which are GML properties, and
register the information to the
GEOMETRY_COLUMNS table.

Figure 4 shows extended spatial database
schemas of the prototype system. Bold
characters represent extension of the schemas
in the OGC specification[24]. MAPPING
RULES table is created by installing SPE to
PostgreSQL. It contains mapping rules that

XML types have in GML schema files. At

GEOMETRY_COLUMMS
T_TABLE_CATALOG

T_TAELE_SUHEMA

F_TABLE_MAKE

F_GEOMETRY_COLUM ——
GML_DESCRIFPTTION
GML_NRME
GML_META_PROPERTY

ENVELOPE

GML MAPP LNG TAHBLE
COGR_GIKBHNZIION

— ZRID
[SPATIAL_REF_S¥S

CRLID

AUTH_NAME
AUTH_SRID

SRTEXT

i)

Soo-hong Park

the install time,
GML processor parses all information GML
schema has and builds the table with basic
mapping information. The Featire MAPPING
table is constructed at the running time. It

a component module of

sets up all mapping information by paring
GML application schema files, as well as the
table brings the pre-organized mapping
information into the Feature MAPPING table
by inheriting the MAPPING RULES table.

5. Test Study

This study used 12 various GML instance
files (D1 to D12) and 2 application schema
files (S1, S2) in order to evaluate queries. Some
were from GML 3 specification (cambridgexml
and city.xsd) and the others came from a
conference, named "GML Days 2004"[27] where

Feature table
FID

2usiness columnl

2usiness_colunnd

Fewhe try oplient

MAPPING_RULES ™,
MABPING PYPE

INPUT

OUFPUF
inherit

DESCRIPYT IR

Foature MAPPING
INNE

OUTHS
PATH

Figure 4. Extended spatial database schema

314

A GML Data Storage Method for Spatial Databases

many GML experts presented. cambridge.xml
is the GML instance document of -city.xsd.
vancouver.xsd is a GML application schema of
the other data files (D2 to DI12).

5.1 Produced Database Schemas

Figure 5 illustrates a database schema which
generated from vancouver.xsd, building.xml,
airport.xml, and roads.xml. This database
schema has a key feature which three GML
data share an application schema and it
represents that the application schema was
written for public purposes. Three tables
(BUILDINGS, AIRPORTS, and ROADS)
have same table schema for each other but

each table stores geometric information into

MAPPING AULES

different Geometry columns (POSITION,
CENTERLINEOF, EXTENTOF). Thus, each
table has two NULL attributes respectively.
In the contrast of the previous mapping, this
case can be often happened because mostly
GML data has similar structures. Since this
is appeared to traditional database systems,
too, this does not be thought as a problematic
case and the performance and storage size is
not affected by it as mentioned above.

There is another example to represent a
special case. CITY MAPPING table contains
the structural information of GML instance,
The structural
comes from GML application schema, city.xsd,
as well as inherits the MAPPING RULES
table where includes mapping rules of GML

cambridge.xml. information

WAEPE | INFUT CUTPIT | RER3FFTION |
= o - e vancouver.xsd
VANCOUVER_MAPPING)
Cwgprha | e | ot W | aUmhs | Far buildings.xm!
P e | e | mme | Ve | e :
| airpart.xml l
BUILDINGS Y * | roads.xmi
UL | SEWROUDN KAME FISTON | CEVERUNEDE SNENH -
1 Ve 1 VG i HRILE NIR
? age | M Vage HutL oy
e e - .
G0 | DESSRIFER | Sate | PusHGY GENTEALMEOH | E<ERIDH
iz Gwe | NUL | W NULL
7 dawe | wme | WL e HutL
 RoADS ‘ '
CELD | CESUMIFIGH | RAVE FDUTON | CEMISRLMECH | EdeMiuh
‘ dhwe Ve NULL UL i
- : o TR]

Figure 5. Produced table schema from vancouver.xsd

315

Ho-young Jeung - Soo-hong Park

schemas. The loader loads GML instance data
to CAMBRIDGE table using the information
of CITY MAPPING table. ambridge.xml has
only two feature members, as GML Properties,
however, the feature members have totally
different XML structures although those share
a application schema file. This case was one
of the worst scenarios GML data may have,
like this
document-centric (see 2.2) data comes into a

Cases can be appeared when
table through the mapping rules. However,
since GML data is obviously data-centric XML,
rarely could these cases be showed in practice.
This study has described only a couple of
cases but all test data has been stored to the
prototype systerrs without reporting any problems.
Without considering for performance, like elapsed
storing time, the proposed storage method can be
thought as a proper strategy to store GML data.

5.2 Storage Size

This study has also experimented with storage
size. Table 2 shows the comparison between
two storage models and Figure 13 illustrates the
tendency as growing the raw data size.

In general, relation size is much smaller
than GML size, even smaller than half. In
particular, a couple of difference tendency are
shown, one is that GML size is smaller than

relation and the other is the opposite.

Case 1 : Relation size > File size - It is
when GML data is smaller than 8
kilo bytes. Since the PostgreSQL/

Case 2

SPE system uses 8K block(page)
size, the prototype system has at
least 8K size for any other data.
GML data usually has much larger
data size, otherwise databases
technologies are useless for GML.
: Relation size < File size - The
tendency of this case is more
when GML data

contains much of positional data

remarkable

like coordinates. The prototype
system/SPE stores the coordinates
to LOB types and it allows such
case data to be much smaller.
Moreover, the prototype system
does not store the additional
mformation such as XML comments,
and empty spaces the stored size
can be smaller. In addition, DBMS
commonly use data compression,
especially for textual data.

Table 2. Storage usage [bytes]

Data GML Relation Ratio G : R
D1 2,105 8,192 389 %
D2 854 8,192 959 %
D3 4,088,526 1,736,704 42 %
D4 4,086 8,192 200 %
DS 104,291 40,960 39 %
D6 138,327 8,192 39 %
D7 10,850 8,192 75 %
D8 497,087 245,760 49 %
D9 192,515 98,304 51 %
D1¢ 15,918,470 7,774,208 48 %
D11 277,526 131,072 47 %
Di2 44,969 24,576 55 %

316

A GML Data Storage Method for Spatial Databases

5.3 Query Evaluation

Table 3 shows the descriptions and features
At the "Query"
column, N1, N2, and N3 describe that those
are non-spatial queries. 81, S2, S3, and $4

of the query templates.

are spatial queries. M1 denotes mixed queries.
The words written in italics and bolds represent
spatial functions/operations that spatial databases
have.

In general, S1 through M1 were very
complex queries needed many geometric
calculations. Despite the complexities, query
response times were under one second except
Furthermore,

remarkable thing is that all queries were

only 4 responses. the most
performed against all of the test data without
any problems. This implies highly important
meaning to overall this study, since this

over stored GML data.

6. Conclusion

This paper has proposed a storage method
which extends a spatial database to store and
query GML data. For this proposal, many
mapping rules from GML application schema
to spatial database schema were defined as
well as suitable XML storage approaches for
GML data ware selected. A prototype system
was implemented to verify the method. In
addition, spatial, non-spatial, and mixed
queries are experimented over the stored
GML data which had various structural
many geometry types, and
diverse data size. As a result, various GML

data could be stored to the prototype system.

information,

resecarch has great interest of spatial abilities Also, complex queries including spatial
Tabie 3. Query templates
Query Description Feature
NI | Select all features plain query
N2 | Obtain idenfiers where the legnth of description is longer than 20 simple aggregate
N3 | Return all columns, after self join with description performance test purpose
S1 | Select geometries(extentOf) where bounding area of the place are greafer | geometric operator
than 50,000,000
S2 | return both binary values and texture value of the Geometry columns | WKB, WKT constructing
where description contain 'builtUp' string
S3 | Count the geometries where envelope of the geometry cross the | spatial relationship
boundary of those
S4 | search line features which bounding boxes spatially does not equal to | spatial analysis with
convexhull geometry of the bounding boxes and return the value as binary | spatial relation
M1 | After self join, count the number of features where a geometry spatially | mixed query

equals to the other and one intersects to the other

1

317

Ho-young Jeung -

asking were simply and quickly executable.

This study has shown that it is possible to
handle most queriecs on GML data using a
spatial database, barring XML queries based
on path. The potential advantage of this
approach is that spatial databases demonstrate
great possibilities to manage GML data. In
contrast, this was not possible with XML
enabled databases[9].

There are several avenues for future works.
This research has not defined operations for
GML since we have thought that spatial
databases have already "good"
Therefore, how to store GML has been the
primary issue. However, GML 3 does not

operations.

include only simple object model but also
many unexplored domains such as topology,
coverage, dynamic features, units of measure,
and so on. This study is only one initial step
towards finding a good way to manage GML
data. One answer against how to manage
various kinds of GML data efficiently, is
using advanced databases technologies. When
we try to find out the methodology that
GML data is stored to any database systems
this study will be a good case study.

References

(1] T. Bray, J. Paoli, and C. Sperberg-McQueen,
1998, "Extensible Markup Language(XML)
1.0", Technical report, W3C Recommendation.

[21 S. Cox, A. Cuthbert, R. Lake, and R.
Martell, "Geography Markup Language (GML)
Implementation Specification, version 2.1.2",

Soo-hong Park

OpenGIS Consortium, 2002.

[3] S. Cox, P. Daisey, R. Lake, C. Portele, and
A. Whiteside, "Geography Markup Language
(GML) Implementation Specification version
3.0", OpenGIS Consortium, 2003.

[4] P. Rigaux, M. Scholl and A. Voisard, "Spatial
Databases With Application to GIS", Academic
Press. 2002, pages 21-26.

[5] Shashi Shekhar, Sanjay Chawla, "Spatial Databases
a Tour", Prentice Hall, 2003, pages 10-11.

[6] J. E. Corcoles, P. Gonzalez, "A specification of a
spatial query language over GML", Proceedings
of the ninth ACM intemational symposium on
Advances in geographic
2001. pages 112-117.

[7] S. Boag, D. Chamberlin, F. Fernandez, D.
Florescu, J. Robie, J. Simeon, and M. Stefanescu,
"XQuery 1.0: An XML Query Language", W3C
Working Draft, 2002.

[8]1 J. E. Corcoles, P. Gonzalez, "Analysis of
Different Storing GML
Documents", In Proceedings of the Tenth

information ~ systems,

Approaches for

ACM International Symposium on Advances
in Geographic Information Systems GIS'02,
2002, pages 11-16.

[9] Bikram Bahadu Shrestha, "XML Database
Technology and its wuse for GML",
www.itc.nl/library, 2004, pages 14-15, 41-63,
93-96.

[10] M. Yoshikawa, T. Amagasa, T. Shimura, and
S. Uemura, "XREL: A Path-Based Approach
to Storage and Retrieval of XML documents
using Relational Databases," Proceeding ACM
Transactions on Internet Technology, Volume
5. 2001.

[11] V. Christophides, S. Abiteboul, S. Cluet, and
M. Scholl.,, "From Structured Documents to
Novel Query Facilities". In Proceedings of
the ACM SIGMOD International Conference

318

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

A GML Data Storage Method for Spatial Databases

on the Management of Data. 1994, pages
313-324.

J. Bosak, T. Bray, D. Connolly, E. Maler,
G. Nicol, C. M. Sperberg-McQueen, L. Wood,
and J. Clark, "W3C XML Specification DTD",
Technical report, W3C Recommendation, 1998.
H. S. Thompson, David Beech, Murray
Maloney and Noah Mendelsohn, "XML Schema
Partl: Structures”, W3C Recommendation,
2001, http://www.w3.org/TR/xmlschema-1.

P. Biron and A. Malhotra, "XML Schema
Part2: Datatypes”, W3C Recommendation,
2001, http://www.w3.org/TR/xmlschema-2/.

J. Shanmugasundaram, H. Gang, Kristin
Tufte, Chen Zang, David DeWitt, and Jeffrey
F. aughton, "Realtional Databases for
Querying XML Documents: Limitaions and
of the
Conference on Very Large Databases. 1999,
pages 302-314.

M. Klettke and H. Meyer, "Managing XML
documents in object- relational databases"
Rostocker Informatik Fachberichte, 1999.

C. Kanne and G. Moerkotte, "Efficient storage
of XML data",
International Conference on Data Engineering.
2000.

D. Florescu and D. Kossmann, "Storing and
querying XML data using an RDBMS",
IEEE Data Engineering Bulletin. 1999, pages
27-34.

T. Shimura, M. Yoshikawa, and S. Uemura,
"Storage and retrieval of XML documents
using object-relational databases”, In Proceedings
of DEXA, 1999.

Opportunities”, In Proceedings

In Proceedings of the

(20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

319

D. Florescu and D. Kossmann, "A Performance
Evaluation of Alternative Mapping Schemas
Storing XML Data in a Relational
Technical Report 3680, INRIA,

for
Database",
1999.

F. Tian, D. DeWitt, J. Chen, and C. zhung,
"The design and performance evaluation of
various XML storage strategies". Submitted
for publication, Computer Science, University
of Wisconsin, Madison, 1999.

M. Klettke and H. Meyer, "XML and
Object-Relational Database Systems-Enhancing

Structural Mappings Based on Statistics".
WebDB, 2000.
P. Bohannon, J. Freire, P. Roy, and J.

Simeon, "From XML Schema to Relations:
A Cost-Based Apporach to XML Storage".
18th International Conference Data
engineering(ICDE2002), 2002.

David Beddoe, Paul Cotton, Robert Uleman,
Sandra Johnson, Dr. John R. and Herring,
"OpenGIS Simple Features Specification for
SQL Revision 1.1", OpenGIS Consortium,
1999.

The PostgreSQL Global Development Group,
"The PostgreSQL 7.2 Administrator's Guide",
www.postgergl.org, 2002, pages X,XIxil.

A. Silberchatz, H. Korth, and S. Sudarshn,
Third edition”,
1996,

on

"Database System Concepts :
The McGraw-Hill Companies, Inc.
pages 23-28.

GML And Geo-Spatial
Conference 2004, Vancouver, British Columbia
http://www.gmldays.com/workshops.html, 2004
July.

Web Services

