Exposure Assessment for Polycyclic Aromatic Hydrocarbons in the Model Menu System of Korean

한국인의 모델식이에 대한 다환방향족탄화수소류(PAHs)의 인체노출량평가

  • Kim YunHee (Korea Food and Drug Administration) ;
  • Yoon EunKyung (Korea Food and Drug Administration) ;
  • Lee HyoMin (Korea Food and Drug Administration) ;
  • Park KyungAh (Korea Food and Drug Administration) ;
  • Jun EunAh (Korea Food and Drug Administration) ;
  • Lee CherlHo (Graduate School of life science and biotechnology, Korea Univ.) ;
  • Choi SangYun (Graduate School of life science and biotechnology, Korea Univ.) ;
  • Lim SeungTaek (Graduate School of life science and biotechnology, Korea Univ.) ;
  • Ze KeumRyun (Korea Food and Drug Administration) ;
  • Choi KwangSik (Korea Food and Drug Administration)
  • Published : 2004.12.01

Abstract

This study was conducted to compare and estimate the daily PAHs dietary intake from both home-cooking and dining-out, through approach of model diet used in exposure assessment of food contaminants. Food commodities reflecting in model diet were selected from the KHIDI report and were analysed in cooked or uncooked edible forms using HPLC-Fluorscence Detector. The PAHs dietary intake comparison between home-cooking and dining-out was based on one meal intake suggested in model diet and PAHs dietary intake was estimated by using food consumption rate and body weight of the Korean adult group. The daily PAHs dietary intake was calculated by permutation and combination method with assumption that a person consumed 2 meals from home-cooking menu and 1 meal from dining-out menu. The total PAHs levels in 36 food commodities with 200 samples were ranged from 2.00 ug/kg to 141.28 ug/kg and a food showing the highest PAHs level was the stir-fried anchovy. The $TEQ_{BaP}$ levels of PAHs were calculated using benzo(a)pyrene equivalents individual congener level and corresponding TEF value and the $TEQ_{BaP}$ level were ranged from $0.03\;ugTEQ{BaP}$ to $1.31\;ugTEQ_{BaP}$ and a food showing the highest $TEQ_{BaP}$ level was the hamburger. The PAHs dietary intakes per one meal from home-cooking and dining-out were $2.4\times10^{-3}\;ugTEQ_{BaP}/kg/meal\;and\;4.0\times10^{-3}\;ugTEQ_{BaP}/kg/meal$, respectively. This data showed the PAHs dietary intake from dining-out was about 1.7 times higher than from the home-cooking. The daily PAHs dietary intakes of general Korean adult having two meals from home-cooking and one meal from dining-out per a day were ranged between $8.0\times10^{-3}\~9.7\times10^{-3}\;ugTEQ_{BaP}/gg/day$ and mean value as $8.9\times10^{-3}\~9.7\times10^{-3}\;ugTEQ_{BaP}/gg/day$.

PAHs 화합물은 유기탄소화합물의 불완전연소에 의해 주로 발생하는데, 일반인들은 대기오염에 의한 호흡노출과 가열조리식품의 경구섭취가 주요 인체노출경로로 알려지고 있다. 본 연구에서는 PAHs 화합물에 오염된 식품이 식생활에 많은 부분을 차지하고 있어 우리나라 대표식품을 참고로 가정식과 외식의 식단을 작성하고 작성한 식단을 근거로 식품 중 PAHs 화합물 오염도를 분석하여, 분석된 PAHs 화합물의 오염도 자료를 활용한 가정식과 외식 1끼 식사를 기준으로 인체노출량을 비교하고, 성인 하루 가정식 2회, 외식 1회 섭취시의 1일인체노출량을 평가하였다. 다빈도${\cdot}$다소비식품에서 PAHs 화합물 오염도를 분석한 결과 총 PAHs 농도는 $2.00\~141.28\;ug/kg$의 범위로 검출되었으며, 멸치볶음이 가장 높게 나타났다. 상대독성계수(TEFS)를 활용하여 환산한 독성등가량은 $0.03\~1.31\;ugTEQ_{BaP}/kg$ 범위였고, 가장 높은 값을 가진 식품은 햄버거이었다. 식품별 오염도와 노출변수들을 고려하여 산출한 끼니별 가정식과 외식에서의 PAHs 화합물 평균인체노출량은 각각 $2.4\times10^{-3}\;ugTEQ_{BaP}kg/meal$$4.0\times10^{-3}\;ugTEQ_{BaP}/kg/meal$으로 외식이 가정식보다 PAHs화합물의 인체노출이 1.7배가 높은 수준으로 나타났다 햄버거, 숯불쇠고기구이, 숯불삼겹살구이, 고등어구이 등은 PAHs화합물 오염도와 독성등가량 및 1회분식품섭취량이 모두 높아 PAHs화합물의 주요 노출기여식품인 것을 알 수 있었다. 가정식에서 미역국이 $1.8\times10^{-3}\;ugTEQ_{BaP}/kg/meal$으로, 외식에서는 햄버거가$3.0\times10^{-3}\;ugTEQ_{BaP}/kg/meal$으로 기여도가 가장 높았다. 하루 3회 식사를 고려한 1일 PAHs화합물인체노출량수준은 $8.0\times10^{-3}\~9.7\times10^{-3}\;ug/kg/day$이었다. 본 연구 결과가 PAHs 화합물의 안전성평가와 기준규격설정의 필요성 및 식품 안전관리를 위한 규제를 제정하는 기초 자료가 되길 바라며, PAHs 화합물의 고노출상황을 줄일 수 있는 개개인의 계획된 식단 작성시, 이에 대한 정보를 제공하고자 한다.

Keywords

References

  1. Pelkonene, O., Nebet, D.W.: Metabolism of polycyclic aromatic hydrocarbons. Etiological Role in Carcinogenesis Phannacol Rev., 43, 189-222 (1982)
  2. Gelboin, H.Y.: Benzo(a)pyrene metabolism, activation. and carcinogenesis Role and regulation of mixed-function oxidases and related enzymes. Physiol Rev., 60, 1107-1166 (1980)
  3. DHHS/ATSDR, Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs) (1995)
  4. American Conference of Governmental Industrial Hygienists, Inc. Documentation of the Threshold Limit Values and Biological Exposure Indices. 6th ed. Volumes I, II, III. Cincinnati, OH: ACGIH, 125 (1991)
  5. Klaassen, CD.: Casarett and Doun's Toxicology. The Basic Science of Poisons. 6th ed. New York, NY: McGraw-Hill, 668 (2001)
  6. Rom, W.N.: Environmental and Occupational Medicine. 2nd ed. Boston, MA: Little, Brown and Company, 877 (1992)
  7. International Agency for Research on Cancer (IARC): monographs on the evaluation of the carcinogenic risk of chemicals to humans Vol.32, polyunclear aromatic compounds, part l. chemical. Environmental and experimental data (1983)
  8. U.S. National Academy of Science: PAR-evaluation of sources and effects 477 (1983)
  9. WHO/IPCS selected Non-heterocyclic polycyclic aromatic hydrocarbons. Environmental health criteria 202 (1998)
  10. 김인숙, 안명수, 장대경: 유지가열시 Benzo(a)pyrene 생성에 관한 연구, 한국조리과학회지, 9(4), 323-332 (1993)
  11. Howord, J.W., Fazio, T.: ,Review of Polycyclic aromatic hydrocarbons in food. Analyrical methology and reported findings of polycyclic aromatic hydrocarbons in foods. Journal of the Association of offical analytical chemists 63, 1077 (1980)
  12. Lodovici, M., Dolara, P, Casalini, C, Ciappellano, S., & Tesolini, G.: Polycyclic aromatic hydrocarbon contaminantion in the Italian food. Food Additives and contaminants, 12(5), 703-713 (1995) https://doi.org/10.1080/02652039509374360
  13. 이효민, 윤은경, 박경아: 식품 중 Polycyclic aromatic hydrocarbons의 위해성평가, 한국식품위생안전성학회지, 19(1), (2004)
  14. Monica, C., Rojo, Camargo., Maria, C, Toledo, F.: Polycyclic aromatic hydrocarbons in brazilian vegetables and fruits. Food Control 14, 49-53 (2003) https://doi.org/10.1016/S0956-7135(02)00052-X
  15. 보건복지부, 1998년도 국민건강영양조사 보고서, 한국산업진흥원 (1999)
  16. 보건복지부, 2001연도 국민건강영양조사 보고서, 한국산업진흥원 (2002)
  17. 한국보건산업진흥원, 한국인의 대표식단 중 오염물질 섭취량 및 위해도 평가(2003)
  18. Chen, B., Wang, C, Chiu, C.: Evaluation of analysis of polycyclic aromatic aromatic hydrocarbons in meat products by liquild chromatography. J. agric. Food Chem. 44, 2244-2251 (1996) https://doi.org/10.1021/jf9508211
  19. Naoy, K., Mitsuhio, w., Naotaka, K., Syuzo, A.: Detenmnation of Polycyclic aromatic hydrocarbons in milk samples by high-performance liquid chromatographywith fluorescence detection. Journal of Chromatography B 789, 257-264 (2003)
  20. Tsai, P., Shieh, Y., Lee, J., Lai, S.: Health-risk assessment for workers exposured to polycyclic aromatic hydrocarbons (PARs) in a carbon black manufacturing industry. The Sci. Total Env 278, 137-150 (2001) https://doi.org/10.1016/S0048-9697(01)00643-X
  21. Nisbet, C, Lagoy, P.: Toxic Equivalency Factors(TEFs) for polycyclic aromatic hydrocarbons (PARs). Reg. Toxicol. Pharmacol. 16, 290-300 (1992) https://doi.org/10.1016/0273-2300(92)90009-X
  22. 보건복지부, 식품별 영양성분 분석자료의 데이터 베이스 추가구축 사업결과보고서 (2000)
  23. 국립기술품질원, 국민표준체위조사보고서, 한국표준과학연구원 (1998)
  24. 통계청, 통계연구보고서 lifetime table (1999)
  25. 이종협: 여수 여천 해양환경영향보사 2차년도 최종보고서, 서울대학교 환경안전연구소 (1999)
  26. Larsson, B., Sahlberg, G.: Polycyclic aromatic hydrocarbons in lettuce: infuence of a highway and an aluminium smelter. Sixth international symposium on physical and biological chemistry, Columbus, Ohio (1981)
  27. Steven, D., Colome, N., Kado. Y., Peter, J., Michael, K.: Atmos Environ 26(4), 2173-2178 (1992) https://doi.org/10.1016/0960-1686(92)90405-A
  28. U.S.EPA. Risk Assessment guidance for superfund. Vol 1. Human health evaluation manual(Part A). Interim Final. EPA/ 540/1-89-002. Office of Emergency and Remedical Response. U.S. Environmental Protection Agency (1989)
  29. 한국식품과학회편, 식품과학용어집 대광서림 (1994)
  30. Gemma, E., Jose, L., Juan, M., Angel, T., Conrad, C., Lutz, M.: Polycyclic aromatic hydrocarbons in foods : Human exposure through the diet in catalonia, Spain. Journal of food protection 66, 2325-2331 (2003)