Medium Composition Affecting Production of Bacterial Cellulose by Gluconacetobacter hansenii PJK in an Agitated Culture

배지조성이 Gluconacetobacter hansenii PJK의 Bacterial Cellulose의 교반 생산에 미치는 영향

  • Jung Jae Yong (Department of Chemical Engineering, Kyungpook National University) ;
  • Chang Ho Nam (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Park Joong Kon (Department of Chemical Engineering, Kyungpook National University)
  • 정재용 (경북대학교 화학공학과) ;
  • 장호남 (한국과학기술원 생명화학공학과) ;
  • 박중곤 (경북대학교 화학공학과)
  • Published : 2004.12.01

Abstract

The effects of variation in composition of the medium on the conversion of Gluconacetobacter hanseii PJK cells producing cellulose ($Cel^+$) to non-cellulose producing ($Cel^-$) mutants and the production of bacterial cellulose (BC) in an agitated culture were investigated. The impeller speed greater than 500 rpm was required to decrease the population of $Cel^-$ mutants to minimum in a basal medium containing $1.5\%$ ethanol because the optimum impeller speed to minimize the population of $Cel^-$ mutants increased with the concentration of ethanol added to a basal medium. Ethanol fed-batch culture could not increase the BC production in an agitated culture unlike that of a shaking culture. The amount of BC produced in a basal medium containing $1\%$ ethanol was $39\%$ more than that of the same medium with $0.27\%\;Na_{2}HPO_4$. Increase in the concentration of acetic acid in a basal medium decreased the BC production. The pH control of the culture broth increased the cell mass in the batch culture and improved the production yield of water-soluble polysaccharide (WSPS), but did not affect the production of BC.

교반배양시 배지에 첨가되는 에탄올의 농도가 증가할수록 $Cel^-$ mutant의 발생율이 증가하므로 $1.5\%$ 에탄올이 첨가된 배지의 경우 500 rpm보다 높은 교반속도를 유지해야 효과적으로 $Cel^-$ mutant의 발생이 억제되고 BC 생산량을 증가시킬 수 있다. 교반 배양과 같은 강한 shear stress의 배양환경 하에서는 진탕배양의 경우와 달리 $1.0\%$ 에탄올을 분할공급하더라도 BC 생산의 효율성을 높일 수 없었다. Phosphate ion이 첨가된 배지보다 첨가되지 않은 배지에서 BC 생산량이 더 높았다. 배지조성 중 아세트산의 농도를 $1.0\%$로 증가시키면 균체의 건조중량은 변화가 없었으나 BC 생산량이 감소되었다. 배양액의 pH 제어는 BC의 생산에는 영향을 미치지 않았으나 균체의 성장과 WSPS의 생산을 향상시켰다.

Keywords

References

  1. Brown, A. J. (1886), An acetic acid ferment which forms cellulose, J. Chem. Soc. 49, 432-439
  2. Delmer, D. P. (1999), Cellulose biosynthesis: exciting times for a difficult field of study, Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 245-276
  3. Delmer, D. P. and Y. Amor (1995), Cellulose biosynthesis, Plant cell 7, 987-1000
  4. Yamanaka, S., K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, Y. Nishi, and M. Uryu (1989), The structure and mechanical properties of sheets prepared from bacterial cellulose, J. Mat. Sci. 24, 3141-3145
  5. Cannon, R. E. and S. M. Anderson (1991), Biogenesis of bacterial cellulose. Crit. Rev. Microbiol. 17, 435-447
  6. Embuscado, M. E., J. S. Marks, and J. N. BeMiler (1994), Bacterial cellulose. Ⅱ. Optimization of cellulose production by Acetobacter xylinum through response surface methodology, Food Hydrocoll. 8, 419-430
  7. Klemm, D., D. Schumann, U. Udhard, S. Marsch (2001), Bacterial synthesized cellulose - artficial blood vessels for microsurgery, Prog. Polym. Sci. 26, 1561-1603
  8. Fontana, J. D., A. M. De Souza, C. K. Fontana, I. L. Torriani, J. C. Moreschi, B. J. Gallotti, S. J. De Souza, G. P. Narcisco, J. A. Bichara, and L. F. X. Farah (1990), Acetobacter cellulose pellicle as a temporary skin substitute, Appl. Biochem. Biotechnol. 24/25, 253-264
  9. Vandamme, E. J., S. De Baets, A. Vanbaelen, K. Joris, and P. De Wulf (1998), Improved production of bacterial cellulose and its application potential, Polym. Degrad. Stabil. 59, 93-99
  10. Schramm, M. and S. Hestrin (1954), Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum, J. Gen. Microbiol. 11, 123-129
  11. Park, J. K., Y. H. Park, and J. Y. Jung (2003), Production of bacterial cellulose by Gluconacetobacter hansenii PJK isolated from rotten apple, Biotechnol. Bioprocess. Eng. 8, 83-88
  12. Park, J. K., J. Y. Jung, and Y. H. Park (2003), Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol, Biotechnol. Lett. 25, 2055-2059
  13. Jung, J. Y., J. K. Park, and H. N. Chang (2004), Bacterial cellulose production by Gluconacetobacter hansenii in an agitated culture without living non-cellulose producing cells, Enzyme Micorb. Technol. submitted for publication
  14. Valla, S. and J. Kjosbakken (1981), Cellulose-negative mutants of Acetobacter xylinum. J. General Microb. 128, 1401-1408
  15. Jung, J. Y., Y. H. Park, and J. K. Park (2003), Effect of medium composition on the bacterial cellulose production by Gluconacetobacter hansenii PJK, Korean J. Biotechnol. Bioeng. 18, 94-99
  16. Hestrin, B. and M. Schramm (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preperation of freeze-dried cells capable of polymerizing glucose to cellulose, Biochem. J. 58, 345-352
  17. Stredansky, M., E. Conti, C. Bertocchi, M. Matulova, and F. Zanetti (1998), Succinoglycan production by Agrobacterium tumefaciens, J. Ferment. Bioeng. 85, 398-403
  18. Conti, E, A. Flaibani, M. ORegan, and I. W. Sutherland (1994), Alginate from Pseudomonas fluorescens and P. putida:production and properties. Microbiol. 140, 1125-1132
  19. Jung, J. Y., Y. H. Park, and J. K. Park (2003) Effect of medium composition on the bacterial cellulose production by Gluconacetobacter hansenii PJK, Korean J. Biotechnol. Bioeng. 18, 94-99
  20. Jonas, R. and L. F. Farah (1998), Production and application of microbial cellulose, Polym. Degrad. Stabil. 59, 101-106