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ABSTRACT: A split-plot designed experiment including
four rice varieties and 10 nitrogen levels was conducted in
2003 at the Experimental Farm of Seoul National Univer-
sity, Suwon, Korea. Before heading, hyperspectral canopy
reflectance (300-1100 nm with 1.55 nm step) and nine crop
variables such as shoot fresh weight (SFW), leaf area
index, leaf dry weight, shoot dry weight, leaf N concentra-
tion, shoot N concentration, leaf N density, shoot N density
and N nutrition index were measured at 54 and 72 days
after transplanting. Grain yield, total number of spikelets,
number of filled spikelets and 1000-grain weight were
measured at harvest. 14,635 narrow-band NDVIs as com-
binations of reflectances at wavelength A1 and A2 were
correlated to the nine crop variables. One NDVI with the
highest correlation coefficient with a given crop variable
was selected as the NDVI of the best fit for this crop vari-
able. As expected, models to predict crop variables before
heading using the NDVI of the best fit had higher r?
(>10%) than those using common broad- band NDVI red
or NDVI green. The models with the narrow-band NDVI
of the best fit overcame broad- band NDVI saturation at
high LAI values as frequently reported. Models using
NDVIs of the best fit at booting showed higher predictive
capacity for yield and yield component than models using
crop variables.

Keywords: Remote sensing, Hyperspectral reflectance, canopy,
nitrogen, rice, NDVI, narrow band,
R 1ce yield 1s closely related to crop growth and nitrogen
status before the heading stage (Cui & Lee, 2002;
Ntanos & Koutroubas, 2002). Leaf area index (LAI), biom-
ass and plant nitrogen (N) concentration and content have
been employed in various models to optimize time and
amount of N fertilizer application (Cui & Lee, 2002; Ntanos
& Koutroubas, 2002; Casanova et al., 2000). However, LAI,
biomass and plant N concentration measurements are very
laborious and time-consuming processes.
So far various vanables related to crop physiology and

biochemustry such as LAI plant N concentration, N uptake
and chlorophyll content have been reliably predicted by
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remote sensing techniques (Hinzman et al., 1986; Takebe et
al., 1990; McMurtrey et al., 1994; Casanova et al., 1998;
Diker & Bausch, 2003; Hansen & Schjoerring, 2003). These
techniques have provided a fast, non-destructive and rela-
tively inexpensive characterization of crop status and have
had a high benefit when applied at regional levels. There-
fore, over the past several decades, remote sensing tech-
nmiques have been used mcreasingly for crop monitoring and
yield prediction (Casanova et al., 1998).

Hyperspectral remote sensing, acquiring images in narrow
(<10 nm) and continuous spectral bands, provides a continu-
ous spectrum for each pixel, unlike multi-spectral systems
that acquire images in a few broad (>50 nm) spectral bands.
Therefore, 1ts data 1s considered more sensitive to single
crop variables (Hansen & Schjoerring, 2003).

The common method for acquiring data from multi-spec-
tral or hyperspectral systems is that they were converted and
averaged mto reflectance of blue, green, red, near-infrared
(450-520, 520-600, 630-690, 760-790 nm) wavebands simi-
lar to the Landsat Thematic Mapper wavebands (Bausch ez
al., 1990, Duggin, 1980). The reflectance of the broad wave-
bands was then used for calculating a normalized difference
vegetation index (NDVI) or ratio vegetation index (RVI) to
predict plant parameters such as leaf N concentration, leaf
chlorophyll concentration, LAI and grain yield (Hinzman et
al., 1986; Diker & Bausch, 2003; Shanahan ef al., 2001).
However, 1t 1s believed that the average spectral reflectance
over a broad waveband, in principle, results in critical loss of
spectral information available in a specific narrow band
(Tilley et al, 2003; Hansen & Schjoerring, 2003; Graeff &
Claupein, 2003).

Reusch (2003) suggested that the ratio of reflectance at
830 nm to reflectance at 730 nm was superior to standard
NDVI and IR/R or IR/G ratios to predict winter wheat N
uptake. The NDVI calculated from reflectance of a single
waveband or average reflectance of a narrow waveband to
predict green biomass, LAI, N and chlorophyll concentra-
tion and density of winter wheat have been reported by
Hansen & Schjoerring (2003). Ratios that combined a red-
edge measure (700-716 nm) with a waveband of high reflec-
tance 1n the very near infrared region (755-920 and 1000
nm) have been reported to provide good precision and accu-
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racy for cotton leaf N prediction (Tilley et al., 2003).

The objectives of this study were (i) to determine the spe-
cific waveband reflectance sensitive to each of nine rice crop
growth and nitrogen indicators of rice, (i1) to compare the
predictive power of regression models to predict the crop
variables before heading and at harvest using NDVIs calcu-
lated by the selected waveband reflectance 1n comparison to
the standard NDVI green and NDVI red. Nine crop variables
before heading included shoot fresh biomass (SFW, g m™),
leaf area index (LAI), leaf dry weight (LDW, g m™), shoot
dry weight (SDW, g m™2), leaf nitrogen concentration (LN,
mg g'), shoot nitrogen concentration (SN, mg g™), leaf
nitrogen density (LND, g m™ ground), shoot nitrogen den-
sity (SND, g m™ ground) and nitrogen nutrition index
(NNI). Gran yield (Yield, g m™), total number of spikelet
(TSPK, no. m™2), filled spikelet (FSPK, no. m™) and 1000-
grain weight (P1000, g) were crop variables measured at
harvest.

MATERIALS AND METHODS

Field experimental design and management

An experiment was conducted 1n 2003 at the Experimen-
tal Farm (37°16'N, 126°59'E) of Seoul National University,
Suwon, Korea. The soil was clay loam with pH 5.4, CEC
11.9 cmol*kg™!, O.M 14.4 mg g™' and total N 0.75 mg g*.
Rice cropping season started in mid- May (transplanting)
and ended 1 October (harvesting).

The experiment was subjected to split plot design with
three replicates and two factors: ten N levels ranging from 0
to 292 kg N ha™' as a main plot factor and four varieties
including Hwasungbyeo, SNU-SG1, Juanbyeo and Surabyeo
as a subplot factor (Table 1). The experiments were well
managed so as to be free of water and disease stress, and
other nutnient deficiencies. Throughout the cropping season,

Table 1. Summary of experiment design and sampling time.

algaecide and herbicide have been applied twice to minimize
the effect of algal and weeds on radiation absorption and
reflectance.

Spectral measurement

Canopy reflectance of the rice crop was recorded using a
GER 1500 spectrophotometer (GER 1500; GER Inc. USA)
with field of view (FOV) of 15°. The measurement range
was set from 300 to 1100 nm with spectral resolution of 1.55
nm. For each measurement 8 scans were performed and the
spectral data represented averages of these scans.

The sensor was held by hand approximately 2.0-m above
the ground with zenith angle of about 25°. Measurements
were taken between 11 : 00 to 13 : 00 local time (GMT + 9)
on 14 July and 31 July (Table 1). Prior to each plant reflec-
tance measurement, reflectance (BaSQ,) of a white standard
was taken. The spectrophotometer automatically calculated
the percent plant reflectance by dividing plant sample reflec-
tance by reflectance of the white standard panel.

Plant sampling and measurement

Immediately after canopy reflectance measurements, five
hills at the location for canopy reflectance measurement
were sampled for agronomic measurements. The plant sam-
ples were weighed for total fresh weight and then a sub sam-
ple was taken. The sub samples were separated into leaf and
stem. The leaf was used for LAl determination using Laser
Area Meter (CID Inc.). After that leaves and stems were
dried at 70°C to constant weight, the dry samples were
weighed, ground and analyzed for total N by Kejeltec Auto
1035 System. The values obtained were then used for calcu-
lating shoot fresh weight (g m™), LAI (m? m™), leaf and
shoot (leaf + stem) weight (g m™), leaf and shoot N concen-
tration (mg g~") and leaf and shoot N density (g m™ ground).

N level (g m™?)

Rice variety (leaf color) Note

000
4.800)
(4.803.6)
4807.2)
(4.83.60)
(4.8363.6)
(4.83.67.2)
(4.87.20)
48723.6)
487272)

Hwasungbyeo (green)
SNU-SG1 (dark green)
Juanbyeo (pale green)

- Plant sampling and
canopy reflectance
measurement at: 54 and 72 DAT

Surabyeo (medium dark green)

- N was applied at 0, 13
and 55 DAT

SN applied at 0, 13 and 55 days after transplanting (DAT), respectively.
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Nitrogen nutrition index (NNI) was calculated using the
equation reported by Cui et al. (2002).

Na
NNI = Te (Eq. )
Where Na is rice shoot N concentration (%) and Nc was
calculated by:

Nc = 4.08 when shoot dry weight (W) < 1.73 tha™.
Nc =5.197W0423 when 1.73 tha™ <W < 12.00 t ha™.

Data pretreatment

A database was constructed and examined for outliers. To
mimmize dangers that the number of variables was greater
than number of observations, the number of spectral reflec-
tance data was reduced by averaging reflectance from every
three consecutive wavebands. The final database included
239 observations described by nine dependent plant vari-
ables before heading, four plant variables at harvest and 170
independent spectral reflectance variables.

Broad-band NDVI calculation

One hundred and seventy discrete 4.65-nm-narrow wave-
band reflectance measurements were averaged over spectral
wavebands of 760 to 900 nm (Rnir), 630-690 nm (Rred) and
520-600 nm (Rgreen). Then NDVI red and NDVI green
were calculated as (Rnir-Rred)/(Rmr+Rred) and (Ruoir-
Rgreen)/(Rnir+Rgreen), respectively.

Narrow-band NDVI calculation

Narrow-band NDVI was calculated as:

Table 2. Summary statistics of crop variables.

Rua —Ryy
Ryo + Ry, (Ea-2)

where R;, and R, were reflectances at waveband A2 and
Al (A2 > A1), respectively.

All possible waveband reflectance combinations from 300
nm to 1100 nm in 4.65 nm steps (14,365 combinations)
were correlated with each of nine crop variables. The result-
ing coefficient of correlation (r) was sorted to select two
combinations of single wavebands with the highest positive
r (S1) and the highest negative one (S2). It 1s noted that the
term single waveband means waveband with 4.65 nm step
due to averaging three consecuttve bands in data pretreat-
ment section. Then r values were used to create two-dimen-
sional maps to show pattern of r values. The NDVI with a
range of Al and A2 was determined by hot spots with 5%
topmost of r (C1) and the hot spots with the 5% highest neg-
ative r value (C2), similarly. This process was repeated for
each of nine crop vanables. After that the NDVI value that
had the highest r derived from correlation between S1, S2,
Cl1, C2 with each crop variable was selected as the NDVI of
the best fit for this crop variable. The NDVIs of the best fit
were further examined by correlation and regression with
four selected crop variables at harvest such as grain yield (g
m™2), number of filled spikelets (No. m™?), number of total
spikelets (No. m™) and 1000-grain weight.

NDVI =

RESULTS
Plant growth and nitrogen variables

Table 2 shows that the variation in crop variables was high
before heading. With the exception of leaf and shoot N con-

Crop variables Unit Mean SD?¥ Min Max Range
Shoot fresh weight gm™ . 1481 660 256 3495 3239
LAI m? m™ 3.05 114 0.53 6.47 5.94
Leaf Dry weight gm™ 135 50 29 290 261
Shoot dry weight gm™ 313 127 60 663 603
Leaf N conc. mgg” 24.2 3.6 176 351 17.5
Shoot N conc. mgg’ 16.0 29 10.5 259 154
Leaf N density gm™ 3.35 158 071 8.36 7.65
Shoot N density gm™ 507 249 105 1293 11.88
N nutrition index 0.492 0.140 0268 0939 0671
Grain yield gm™ 600 112 297 852 555
Filled Spikelet No m™ 22957 3747 11547 29969 18422
Total Spikelet No. m™ 26680 5660 13533 41903 28370
1000-grain weight g 264 1.1 240 28.6 46

$Standard deviation®
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Fig. 1. Wavelength dependence of coefficient of correlation (r) between canopy reflectance and each of selected crop vanables measured

before heading stage of rice

centration, maximum values of the variables were more than
ten times higher than mmimum values At harvest, grain
yield had the highest variation (max/min ~ 3) and 1000-
grain weight had the least variation (max/min ~ 1.2). The
high variation 1n crop variables before heading and at har-
vest was expected due to the wide range of N application
levels (0 - 292 kg ha™), N application time (0 - 3 times) and
rice varieties (four varieties). Four rice varieties were
selected for the experiment based on (1) quite similar growth
and development time to ensure that panicle initiation, boot-
ing, heading and harvest stages coincide, and (i1) difference
in leaf color to challenge canopy reflectance to predict crop
characteristics. Leaf colors of Hwasungbyeo, SNU-SG1,
Juanbyeo and Surabyeo are green, dark green, pale green
and medium dark green, respectively.

Correlation between crop variables and
hyperspectral single band reflectance

Fig. 1 presents the correlation between canopy reflectance
at various wavebands ranging from 300 nm to 1100 nm with
crop variables measured when canopy reflectance was
taken. It can be seen from Fig. 1 that for most of the crop
vartables, high posttive or negative correlation coefficients
were obtained at about ranges of 300 - 310 nm, 490 - 500
nm, 670 - 680 nm and higher than 770 nm. However, 1t also
indicates that no single waveband reflectance would be suc-
cessfully used to predict the crop variables because the high-
est r values were Jower than 0.8.

Selection of the most sensitive wavebands

For each crop variable, single wavebands for two NDVI

Table 3. The selected single waveband for NDVI based on the
maximum and positive (S1) and maximun and negative
(S2) coefficient of correlation (r) and the selected
waveband range for NDVI from black spot (Cl) and
white spot (C2) of 2-dimemtion maps 1n Fig 2

Sensitive wavebands

Crop variables

Al A2

Cl1 743 - 753 768 - 882

Shoot fresh C2 341 - 351 541-617
weight S1 758 804
S2 334 721

Cl 743 - 753 841 - 965

LAL C2 355 - 364 646 - 666
S1 744 954
s2 355 707

Cl 745-753 786 - 923

Leaf and shoot 2 315-351 713 -725
dry weight S1 749 836
S2 355 707

Cl 754 - 767 791 - 850

Leaf and shoot C2 446 - 457 466 - 475
N concentration S1 763 786
S2 451 466

Cl1 743 - 753 795 - 850

Leaf and shoot C2 311 - 345 720 - 726
N density S1 763 791
S2 334 726

Cl 755 - 765 768 - 805

Nitrogen nutrition C2 312-328 725 -730
index S1 763 791
S2 323 730
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Fig. 2. Wavelength dependence of coefficient of correlation (r) between NDVI calculated from all of possible combinations and the crop
variables. Black and white spots are top of 5% of r for positive and negative correlation, respectively. SFW, LAI, LDW, LSN,

LSND, NNI are shoot fresh weight, leaf and shoot dry weight, leaf and shoot N concentration, leaf and shoot N density and N
nutrition index, respectively.
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which had the highest positive r (S1) and the lowest negative
r (S2) were selected (namely NDVI of the best fit and the
most sensitive wavebands for selected NDVI and waveband,
respectively). Fig. 2 shows dependence of r values between
NDVI and crop variables on reflectance of A1 and A2 used
for calculating NDVI. The NDVI of the best fit with a range
of Al and A2 was determined by hot spots with 5% topmost
of r (C1) and the hot spots with the 5% of the topmost nega-
tive r values (C2). This process was repeated for each of nine
crop variables.

The selected single wavelengths and the selected narrow
waveband for NDVT of the best fit are shown in Table 3. It 1s
noted that LDW and SDW had the same S1, S2, C1 and C2
and so were LN and SN, and LND and SND. Table 4 pre-
sents r values derived from correlation between NDVI cal-

culated from S1, S2, C1, C2 with crop variables. It can be
seen that in comparison within one crop variable, correlation
between the crop variable and NDVIs from the single wave-
length reflectance (S1 and S2) had higher r than that with
narrow waveband reflectance (Cl1 and C2). Similarly, r
between the crop varables with NDVI calculated from
reflectance of near-infrared red wavebands and red wave-
band (S1, C1) were higher than those with NDVI calculated
from reflectance of red and ultraviolet wavebands except for
leaf and shoot N concentration. The correlation between a
crop variable and NDVIs calculated from smgle or narrow
waveband reflectance values was definitely higher than the
correlation between the crop variable and NDVI calculated
from broad waveband reflectance (NDVI green and NDVI
red). The NDVIs with the highest r for SFW, LAI, LSDW,

Table 4. Coefficient of correlation (r) between the selected NDVIs and nine crop vanables before heading stage

Crop variables

NDVI
Fw LAI LDW SDW LN SN LND SND NNI
Cl 0818 0750 03810 0782 0.695 0.574 0.884 0897 03895
NDVFy C2 0776 -0.695 -0.766 -0.745 -0.665 -0.549 -0.838 -0.852 -0 845
S1 0.820 0.725 0.796 0.775 0.721 0.601 0.886 0.905 0.901
S2 -0.786 -0.716 -0.780 -0.751 -0.689 -0.578 -0.859 -0.870 -0.870
Cl 0.808 0.763 0.809 0.777 0.671 0.552 0.875 0.884 0.880
NDVI, c2 -0.756 -0.720 -0.766 -0.737 -0.597 -0.487 -0.816 -0.821 -0 807
S1 0.781 0.762 0790 0759 0.593 0.473 0.831 0837 0.824
S2 -0.772 -0.723 -0.775 -0.751 -0.602 -0.490 -0.825 -0.834 -0 818
Cl 0.816 0.753 03810 0781 0.694 0.574 0834 0.896 0.894
NDVIpy 2 -0782 -0.709 -0.774 -0.744 -0.702 -0.590 -0.859 -0 871 -0874
S1 0.820 0.746 0.810 0.784 0.709 0.587 0.890 0.904 0.902
S2 0772 -0723 -0.775 -0.751 -0 602 -0.490 -0 825 -0.834 -0.818
Cl 0.814 0720 0.789 0.767 0.726 0608 0.882 0.901 0.897
NDVI, C2 -0 626 -0.585 -0 636 -0.581 -0.757 -0 669 -0776 -0.777 -0.829
S1 0.814 0.729 0797 0770 0734 0616 0890 0906 0.908
S2 0571 -0539 -0.586 -0.526 -0.766 -0.688 -0.739 -0.739 -0.806
Cl 0.820 0.746 0.810 0.781 0.700 0.578 0.886 0.908 0.907
NDVIp C2 0777 -0703 -0.768 -0736 -0716 -0 606 -0.860 -0.871 -0.878
St 0.820 0.728 0.798 0.774 0731 0.611 0.891 0.909 0.908
S2 -0772 -0 687 -0756 -0728 -0724 -0616 -0 855 -0.869 -0.876
Cl 0.820 0.736 0.803 0.779 0.721 0.601 0.892 0.909 0907
NDVIg Cc2 -0.754 -0678 -0.743 -0.707 -0.746 -0642 -0 852 -0 863 -0.880
S1 0.820 0.728 0.798 0.774 0.731 0611 0891 0.909 0908
S2 -0.737 -0.654 -0.720 -0.686 -0.761 -0.660 -0 840 -0.853 -0 875
NDVIred 0.604 0.614 0.630 0.610 0.332 0234 0.605 0604 0580
NDVI green 0.684 0.671 0.703 0.680 0.451 0.341 0.704 0.706 0689

$Italics are the highest r within single, narrow or broad waveband, bold and italics indicate the highest r among single, narrow and broad
wavebands (NDVIs of the best fit for each crop vanables, respectively).
*NDVIggw, NDVI_ s, NDVIpyw, NDVIy, NDVIyp, and NDVIgy are NDVI of the best fit for shoot fresh weight, LAL leaf and shoot dry
weight, leaf and shoot N concentration, leaf and shoot N density, and N nutrition mdex respectively NDVInp and NDVIyy; are similar and
named NDVIND and NNI
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LSN, LSND and NNI were reselected as NDVISs of the best
fit for each crop variable and stood for NDVIggw, NDVI 4,
NDVIpw, NDVIy and NDVINp ang nnis respectively (Table 4).

Prediction of the crop growth variables using the
NDVIs of the best fit

The selected NDVIs of the best fit were used for linear and

KOREAN J CROP SCI, VOL , 49(5), 2004

ciently higher than those derived from the crop variables and
NDVI green (the NDVI of the best fit of broad-band
NDVIs). For most crop variables except LAl the linear
equation (Y= aX + b) was the best model to predict crop
variables using NDVI of the best fit. However, the exponen-
tial equation (Y=ae™) rather than linear model was the best
model to predict the crop variables using NDVI green (Table
5 and Fig. 3).

non-linear regression to predict nine crop variables: SFW,
LDW, SDW, LN, SN, LND, SND and NNI measured at the
same time of canopy reflectance taken. Table S indicates that
for all crop variables, model r* derived from regression
between crop variables and NDVIs of the best fit were suffi-

Prediction of yield and yield components using crop vari-
ables and NDVI of the best fit measured before heading

An observed variable receives more attention if it is more

Table 5. Summary of the models derived from regression between the NDVIs of the best fit (X) with each of nine rice crop vanables (Y).

NDVI green NDVI of the best fit
Crop variables r
Equations r Equation
Value  Dufference to NDVI green (%)

Shoot fresh weight Y =150.49¢° 1% 0.57 Y = 18810X 14.3 067 18
LAI Y =0.463¢* 7 0.54 Y =182¢*7% 0.63 17
Leaf Dry weight Y =20.14e? % 0.59 Y =7454X +18.7 0.66 12
Shoot dry weight Y =39.61e*% 0.55 Y =18230X +28.2 0.61 11
Leaf N conc Y = 16.43¢7 6% 019 Y =-27444X+3019 059 211
Shoot N conc Y = 11.29¢04% 010 Y =-198 14X +2032 047 370
Leaf N density Y =0.331e* "% 062 Y =74.4X0.33 0.79 27
Shoot N density Y = 04476 %% 062 Y =119.8X 085 0.83 34
N nutrition index Y =0 1465¢' 7% 0.53 Y =6745X +0 159 0.83 57

Table 6. Correlation coefficient (r) derived from crop variables, NDVIs of the best fit at panicle 1nitiation (54 DAT) and booting stages (72
DAT) with crop variables at harvest

Crop variables at PI stages Crop variables at booting

Crop variables

Y (gm?)? FSPK TSPK Pooo (2) Y (gm?) FSPK TSPK P1ooo (2)
Shoot fresh weight 0.49 043 0.38 -0.06 0.59 0.55 051 002
LAI 0.39 037 0.27 0.00 0.55 0.51 043 008
Leaf Dry weight 0.46 038 032 0.01 0.61 055 047 0.11
Shoot dry weight 0.48 0.41 033 0.05 0.52 047 038 0.11
Leaf N conc -0.03 002 0.10 -0.45 0.70 0.68 0.70 028
Shoot N conc 0.18 013 -005 -0.38 0.67 0.64 0.67 -0.27
Leaf N density 041 0.35 031 010 0.73 067 063 005
Shoot N density 042 0.36 031 009 0.73 067 064 008
N nutrition index 0.34 031 029 -0.21 0.77 072 072 0.18
NDVIFgpw 026 0.28 035 036 0.85 081 082 025
NDVI, 4, 022 0.23 022 014 0.81 0.76 074 013
NDVIpy 027 0.27 032 026 0.85 0.81 082 022
NDVIy 015 -0.21 -0.29 0.42 0.72 -0.65 -0.66 017
NDVInp and vt 026 0.27 0.34 033 0.85 081 082 025
NDVI green 021 0.15 0.15 0.01 0.80 0.73 069 0.01

%Y, FSPK, TSPK and P, are grain yield, number of filled spikelet, number of total spikelet and 1000-grain weight, respectively
NDVIgpw ,NDVI 51 NDVIpw NDVIy NDVIyp a0 nn are NDVIs of the best fit for Shoot fresh weight, LAL leaf and shoot dry weight, leaf
and shoot N concentration, and leaf and shoot N density and nitrogen nutrition index, respectively.
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Fig. 3. The regression between NDVI of the best fit and NDVI green with some selected crop variables. Filled circles, open circles, filled
triangles, and open triangles present for Hwasungbyeo, SNU-SG1, Juanbyeo, and Surabyeo, respectively

closely related to yield All crop vaniables and NDVIs of the weight) (Table 6). In general, crop variables and NDVIs of
best fit were correlated to crop variables measured at harvest the best fit measured at panicle initiation stage (PI) or boot-
(grain yield, filled and total number of spikelets, 1000-grain ing stage had higher correlation with grain yield than the
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other yield components. At booting, NDVIs of the best fit relation with yield and yield components than that their
had higher correlation with yield and yield components than NDVIs of the best fit did.

crop variables had, and should be used to predict grain yield To address the question as to why both crop variables and
at harvest or as estimators for N application at booting or NDVI of the best fit had been loosely correlated with grain
heading. However, at PI, crop variables showed higher cor- yield, we analyzed correlation between the crop variables

Table 7. Dependence of correlation between crop variables, NDVI measured at PI and yield on varieties and amount of N applied at PL

Crop varables Hwasungbyeo SNU-SG1 Juanbyeo Surabyeo
0* 36 72 0 36 72 0 36 72 0 36 72

Shoot fresh weight 075 048 049 074 077 -045 067 049 -055 085 068 (042
LAI 072 023 0.21 061 065 -050 068 064 -0.69 08 048 058
Leaf Dry weight 074 035 0.53 068 082 -0.38 074 039 -043 081 066 055
Shoot dry weight 075 054 059 074 080 -043 060 032 -032 08 076 045
Leaf N conc 029 031 0.10 013 067 -040 -027 067 -055 -004 040 037
Shoot N conc. -003 022  0.06 -024 052 -032 -0.31 0.60 -065 037 001 038
Leaf N density 076 049 038 067 084 -042 069 056 -046 073 067 059
Shoot N density 078  0.67 0.38 070 083 -045 060 057 -045 076 070 058
N nutrition index 081 072 026 062 079 -045 062 064 -056 064 059 057
NDVFgrw 0.65 075 014 041 027 -020 037 082 -066 071 016 -0.05
NDVI 41 0.71 049 -0.04 075 -035 -038 080 0.12 -067 079 -0.13 -046
NDVIpw 065 062 004 059 005 -034 059 065 -0.68 076 033 -0.10
NDVIy 042 017 019 -0.59 -038 035 -040  0.01 0.57 -040 061 0.10
NDVINp and NNI 062 063 0.07 046 027 -027 040 083 -0.67 073 039 002
NDVIgreen 0.51 042 -008 057 -025 -046 0.63 027 -0.5 065 037 -0.18

%0, 36 and 72 are N amount apphed at 55 DAT
*NDVIgrw, NDVI_5; NDVIpy NDVIy, NDVIyp gna s are NDVI of the best fit for Shoot fresh weight, leaf area index , leaf and shoot dry
weight, leaf and shoot N concentration, and leaf and shoot N density and nitrogen nutrition index, respectively

Table 8. Coefficient of deternunation () derived from regression to predict gramn yield (Yield), number of filled spikelets (FSPK) and total
number of spikelets (TSPK) using crop vanables and N rates applied at PI or only crop variables measured at booting

AtPI At Booting
Crop vanables Yield FSPK TSPK Yield FSPK TSPK
Shoot fresh weight 065 0.53 053 0.34 029 0.25
LAI 0.62 0.52 051 029 025 018
Leaf Dry weight 0.63 0.53 0.51 037 0.29 0.21
Shoot dry weight 0.65 053 0.52 0.27 0.21 0.14
Leaf N conc. 0.55 047 0.51 049 0.45 049
Shoot N conc 056 047 0.50 0.44 041 045
Leaf N density 062 051 052 053 044 039
Shoot N density 062 0.51 052 0.53 045 041
N nutrition index 060 0.50 052 0.59 052 0.51
NDV ey 0.57 0.49 0.54 072 0.65 0.67
NDVI 5 0.58 0.49 052 066 0.58 0.55
NDVIpw 0.58 0.49 0.54 072 0.65 0.66
NDVIy 0.56 048 0.53 051 042 043
NDVIyp and nni 0.57 0.49 0.54 0.72 0.64 067
NDVIGreen 057 0.48 0.50 0.64 052 047

SNDVIgpw, NDVI 4, NDVIpw, NDVIy, NDVINp ang nai are NDVIs of the best fit for Shoot fresh weight, LA, leaf and shoot dry weight, leaf
and shoot N concentration, and leaf and shoot N density and nitrogen nutrition index, respectively.
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Fig. 4. Regression between grain yield, total number of spikelets observed (X) and predicted by NNI and NDVI,y, of the best fit measured
at booting stage (Y). Filled circles, open circles, filled tnangles, and open triangles present for Hwasungbyeo, SNU-SG1, Juanbyeo,

and Surabyeo, respectively Solid line 1s 1:1 line.

and NDVIs of the best fit measured at PI with grain yield of
each variety at a certain level of N applied at PI (Table 7).
For most varieties the correlation was higher where there
was no N applied at PI treatments compared to 36 or 72 kg
ha™' treatments. The low correlation between crop variables
and NDVI of the best fit measured at PI with grain yield
resulted from the different responses to N application (espe-
cially at 72 kg N ha™") among all four varieties and a large
effect of N application at PI on grain yield.

Further multiple regression analysis to predict gram yield,
number of filled spikelets and total number of spikelets
(Table 8) revealed that regression models to predict grain
yield and yield components using one crop variable and N
application at PI explained more variation 1n grain yield and
yield components at harvest than the models using one crop
variable alone measured at booting. In contrast, regression
models to predict grain yield and yield components using
one NDVI of the best fit and N application at PI explained
less variation 1n grain yield and yield components at harvest
than the models using one NDVTI of the best fit alone mea-
sured at booting.

DISCUSSION

Sensitivity of hyperspectral waveband
reflectance to crop variables

From the vanation of r, denived from correlation between
each of nine crop variables with each reflectance of 170
wavebands, it is shown in Fig. 1 that most crop vanables
have the highest negative correlation with reflectance
occurred at a waveband centered around 670-680 nm. Then-
kabail et al. (2000) and Hansen & Schjoerring (2003)
reported the same results when they correlated single band
reflectance with crop variables of cotton, potato, soybean,
comn and winter wheat. The negative correlation between
reflectance and crop variable may result from high chloro-
phyll absorption at this waveband. The sharp change from
maximum negative to maximum positive correlation from
approximately 670 nm to 780 nm reflected the mgh reduc-
tion in light absorption of green vegetation with increasing
wavelength. Increasing wavelength after 780 nm did not sig-
nificantly change the correlations except the slight change in
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the correlations at wavelength of approximately 950 nm.
This may be related to high light absorption of water. Leaf N
concentration and SN showed the same correlation pattern
as the other crop vanables but a lower correlation coeffi-
cient. Similarly, changing from high positive to high nega-
tive correlation between the crop variables and reflectance
with increasing wavelength from approximately 300 nm to
500 nm indicates that green vegetation increased light
absorption over these wavelengths. The highest Pearson cor-
relation of 0.714, derived from correlation between LAI and
reflectance of A = 1047 nm, suggests that no single wave-
length reflectance may successfully explain variation in crop
variables.

The low correlation between the crop variables with
hyperspectral single band reflectance may result from sev-
eral types of errors that occurred in reflectance measure-
ment. One of the possible errors that caused reflectance error
with a band was the vanation of sensor position relative to
targets due to hand held operation. The variation of sensor
position relative to targets resulted in quite severe changes in
absolute reflectance values with a band. However, if com-
parison of band- to band reflectance values were used, the
errors could be ignored (Fig. 5).

Relationship between NDVI and crop growth variables
measured at the same time of reflectance measurement

The r derived from correlation between NDVIs and crop
variables ranged from high to low in order of single-band
NDVI, narrow-band NDVI and broad- band NDVI. This

suggests that reflectance was very sensitive to crop variables
at a given waveband and any aggregation of reflectance over
waveband, even narrow band, resulted 1n a lower correlation
between the variables (Table 4). A frequent use of reflec-
tance at wavebands ranging from 740 to 790 nm as the most
sensitive waveband reflectance for NDVI calculation indi-
cates that the chlorophyll red-edge (710 - 780 nm) portion of
the spectrum region (Thenkabail et al., 2000) had a critical
impact on reflectance at the region. An important role of
reflectance at wavelength ranging from 710 - 780 nm on
predicting crop growth and nitrogen variables has been
widely reported (Hansen & Schjoerring, 2003; Thenkabail,
2000; Yoder & Crosby, 1995; Elvidge & Chen, 1995). The
best fit linear regression (Y =aX +b) to predict the crop
variables using the narrow-band NDVI of the best fit in com-
parison to the best fit non-linear regression (Y=ae™) using
NDVI green (Table 5, Fig. 3) reveals that narrow-band
NDVIs of the best fit overcame NDVI saturation at high LAI
values as reported by Huete (1988) and Haboudane et al.
(2004)

Relationship between NDVI and crop growth variables
before heading and yield and yield components

It is unclear why crop vanables at PI stage were more sen-
sitive to yield and yield components than NDVIs of the best
fit when NDVIs of the best fit were more sensitive than crop
variables at booting stage. We hypothesize that NDVIs of
the best fit selected for one variable not only contamn nfor-
mation related to this crop variable but also other unclarified
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information related to crop health at the time of reflectance
measurement. As a result, NDVIs of the best fit may be were
easily changed with the change of crop health if any large
influence on crop growth occurred such as N application at
PI in this study. Therefore, NDVIs of the best fit at booting
stage without the large influence of N application at PI
showed more sensitivity to yield and yield component than
NDVIs of the best fit measured at PI. Moreover, predictive
capacity (R?) of regression models using NDVI of the best
fit and N amount applied at PI were higher than that of the
model using crop variables and N amount applied at PI to
predict total number of spikelets. We may suggest that
NDVIs of the best fit 1s better crop health indicator at PI than
crop variables because total number of spikelets which were
determined mainly by crop growth status before PI and N
application at PI (Cu1 & Lee, 2002).

CONCLUSION

As expected, models to predict crop variables before head-
ing using the NDVI of the best fit had hugher r* (>10%) than
those using common broad- band NDVI red or NDVI green.
The models with the narrow-band NDVI of the best fit over-
came broad- band NDVI saturation at high LAI values as
frequently reported. The NDVI of the best fit selected for a
given crop variable reflected crop health status better than
the crop varitable. NDVI calculated from hyperspectral sin-
gle band reflectance showed higher correlation with corre-
sponding crop variable than any NDVI calculated using
reflectance aggregated over narrow or broad bands.
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