IFN-${\gamma}$mRNA Expression in Tuberculous Pleural Lymphocytes After in vitro Stimulation with M. tuberculosis Antigens

결핵균 항원 자극에 의한 결핵성 흉수 림프구의 IFN-${\gamma}$ mRNA 발현

  • Park, Jae Seuk (Department of Internal Medicine, Dankook University College of Medicine) ;
  • Kim, Youn Seup (Department of Internal Medicine, Dankook University College of Medicine) ;
  • Jee, Young Koo (Department of Internal Medicine, Dankook University College of Medicine) ;
  • Lee, Kye Young (Department of Internal Medicine, Dankook University College of Medicine)
  • 박재석 (단국대학교 의과대학 내과학교실) ;
  • 김윤섭 (단국대학교 의과대학 내과학교실) ;
  • 지영구 (단국대학교 의과대학 내과학교실) ;
  • 이계영 (단국대학교 의과대학 내과학교실)
  • Received : 2003.02.18
  • Accepted : 2004.05.27
  • Published : 2004.07.30

Abstract

Background : IFN-${\gamma}$ is the main effector mediator of the host immune response against Mycobacterium tuberculosis. Evaluating the IFN-${\gamma}$ gene expression in response to M. tuberculosis antigens may help in elucidating the host defense mechanism against M. tuberculosis and in the development of a vaccine. Methods : The IFN-${\gamma}$ mRNA expression in the lymphocytes obtained from pleural effusions from tuberculous pleurisy patients (TB-PLC) after in vitro stimulation with whole cell M. tuberculosis(H37Rv), purified protein derivatives(PPD), man-lipoarabinamman (man-LAM), ara-LAM and Antigen 85B(Ag85B) were evaluated. The degree of IFN-${\gamma}$ mRNA expression was determined by a semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) method. Results : M. tuberculosis induced the expression of IFN-${\gamma}$ mRNA in the TB-PLC in time and dose dependent manners. The PPD and Ag85B induced high levels of IFN-${\gamma}$ mRNA expression in the TB-PLC. However, man-LAM inhibited IFN-${\gamma}$ mRNA expression in the TB-PLC, while ara-LAM did not. Conclusion : IFN-${\gamma}$ mRNA expression in TB-PLC is stimulated by PPD and Ag85B, but inhibited by man-LAM.

연구배경 : IFN-${\gamma}$는 결핵균에 대한 숙주의 면역학적 방어기전에서 핵심적인 역할을 한다. 그러므로 결핵균 항원들이 IFN-${\gamma}$ 유전자 발현에 미치는 영향을 알아보는 것은 결핵균에 대한 숙주의 방어기전을 밝히고 이를 이용한 백신의 개발에 이용될 수 있을 것이다. 방 법 : 결핵성 흉막염 환자의 흉수에서 얻은 림프구 배양액에 결핵균(H37Rv), PPD, Ag85B, man-LAM, ara-LAM을 첨가하여 자극한 후 림프구의 IFN-${\gamma}$ mRNA의 발현 정도를 역전사 중합효소연쇄반응을 이용하여 비교하였다. 결 과 : 1) 결핵균(H37Rv)이 결핵성 흉수 림프구의 IFN-${\gamma}$ mRNA의 발현을 증가시켰다. 2) 결핵균 항원 중 PPD와 Ag85B는 결핵성 흉수 림프구의 IFN-${\gamma}$ mRNA의 발현을 증가시켰지만 man-LAM은 결핵성 흉수 림프구의 IFN-${\gamma}$ mRNA의 발현을 억제시켰다. 3) LAM 중에서 man-LAM은 용량이 증가함에 따라 결핵성 흉수 림프구의 IFN-${\gamma}$ mRNA의 발현의 억제 정도가 증가하였지만 ara-LAM의 경우 이와 같은 현상이 관찰되지 않았다. 결 론 : 결핵성 흉수 림프구의IFN-${\gamma}$ mRNA의 발현은 PPD와 Ag85B의 자극에 의해 항진되지만 man-LAM의 자극에 의해서는 억제되었다.

Keywords

References

  1. Fatkenheuer G, Taelman H, Lepage P, Schwenk A, Wenzel R. The return of tuberculosis. Diagn Microbiol Infect Dis 1999;34:136-46
  2. Ministry of Health and Welfare, Korean Academy of Tuberculosis and Respiratory diseases. The $7^{th}$ Na tionwide Survey for Tuberculosis. p 13, Seoul, 1996
  3. Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol 2001;19:93-129
  4. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon-$\gamma$ gene-disrupted mice. J Exp Med 1993;178:2243-7
  5. Dorman SE, Holland SM. Interferon-gamma and interleukin-12 pathway defects and human disease. Cytokine Growth Factor Rev 2000;11:321-33
  6. Condos R, Rom WN, Schluger NW. Treatment of multidrug resistant pulmonary tuberculosis with interferon-gamma via aerosol. Lancet 1997;349:1513-5
  7. Maeda J, Ueki N, Ohkawa T, Iwahashi N, Nakano T, Hada T, et al. Local production and localization of transforming growth factor-$\beta$ in tuberculous pleurisy. Clin Exp Immunol 1993;92:32-8
  8. Kim MH, Kim SJ, Park YK, Kim SC, Lee SY, Kim YK, et al. The levels of interferon-gamma, interleukin-2 receptor, interleukin-6, interleukin-10 in malignant effusion, tuberculous effusion, parapneumonic effusion, and lung empyema. Tuberculosis and Respiratory Diseases 2000;49:568-75
  9. Barnes PF, Mistry SD, Cooper CL, Pirmez C, Rea TH, Modlin RL. Compartmentalization of a $CD^+$ T lymphocyte subpopulation in tuberculous pleuritis. J Immunol 1989;142:1114-9
  10. Ribera E, Espanol T, Martinez-Vasquez JM, Ocana I, Encabo G. Lymphocyte proliferation and gammainterferon production after in vitro stimulation withPPD. Difference between tuberculous and non tuberculous pleurisy in patients with positive tuberculih skin test. Chest 1990;97:1381-5
  11. Kamath AT, Feng CG, Macdonald M, Briscoe H, Britton WJ. Differential protective efficacy of DNA vaccines expressing secreted proteins of the Mycobacterium tuberculosis. Infect Immun 1999;67:1702-7
  12. Hunter SW, Brennan PJ. Evidence for the presence of a phosphatidylinositol anchor on the lipoarabinomannan and lipomannan of Mycobacterium tuberculosis. J Biol Chem 1990;265:9272-9
  13. Khoo KH, Dell A, Morris HR, Brennan PJ, Chatterjee D. Inositol phosphate capping of the nonreducing termini of lipoarabinomannan from rapidly growingstrains of Mycobacterium. J Biol Chem 1995;270:12380-9
  14. Dahl KE, Shiratsuchi H, Hamilton BD, Ellner JJ, Toossi Z. Selective induction of transforming growth factor beta in human monocytes by lipoarabinoman nan of Mycobacterium tuberculosis. Infect Immun 1996;64:399-405
  15. Stead WW, Einchenholz A, Stauss HK. Operative and pathologic findings in twenty-four patients with syndrome of idiopathic pleurisy with effusion, presumably tuberculous. Am Rev Tuberc 1955;71:473-502
  16. Arruda S, Chalhoub M, Cardoso S, Barral-Netto M. Cell-mediated immune responses and cytotoxicity to mycobacterial antigens in patients with tuberculous pleurisy in Brazil. Acta Tropica 1998;71:1-15
  17. Barnes PF, Lu S, Abrams JS, Wang E, Yamamura M, Modlin RL. Cytokine production at the site of disease in human tuberculosis. Infect Immun 1993;61:3482-9
  18. Schwander SK, Torres M, Sada E, Carranza C, Ramos E, Tary-Lehmann M, et al. Enhanced responses to Mycobacterium tuberculosis antigens by human alveolar lymphocytes during active pulmonary tuberculosis. J Infect Dis 1998;178:1434-45
  19. Andersen P. Effective vaccination of mice against Mycobacterium tuberculosis infection with a soluble mixture of secreted mycobacterial proteins. InfectImmun 1994;62:2536-44
  20. Wiker HG, Harboe M. The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis. Microbiol Rev 1992;56:648-61
  21. Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic S. Recombinant bacillus calmette-guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional vaccines in a highly susceptible animal model. Proc Natl Acad Sci USA 2000;97:13853-8
  22. Moreno C, Mehlert A, Lamb J. The inhibitory effects of mycobacterial lipoarabinomannan and polysaccharides upon polyclonal and monoclonal human T cell proliferation. Clin Exp Immunol 1988;74:206-10
  23. Chujor CS, Kuhn B, Schwerer B, Bernheimer H, Levis WR, Bevec D. Specific inhibition of mRNA accumulation for lymphokines in human T cell line Jurkatby mycobacterial lipoarabinomannan antigen. Clin Exp Immunol 1992;87:398-403
  24. Barnes PF, Fong SJ, Brennan PJ, Twomey PE, Mazumder A, Modlin RL. Local production of tumor necrosis factor and IFN-gamma in tuberculouspleuritis. J Immunol 1990;145:149-54